Table 4: The confusion matrix for the Gaussian mixture method using 14variability classes and 28 classification attributes. The last but one line lists the total number of light curves (TOT) to define every class. The last line lists the correct classification rate (CC) for every class separately. The average correct classification rate is about $92\%$.
  MIRA SR CLCEP DMCEP RRAB RRC RRD DSCUT BCEP SPB GDOR EA EB EW
MIRA 140 0 3 0 0 0 0 0 0 0 0 0 0 0
SR 0 36 0 0 0 0 0 1 0 0 0 0 0 0
CLCEP 4 1 187 0 0 0 0 0 0 0 0 0 0 0
DMCEP 0 0 0 95 0 0 0 0 0 0 0 0 0 0
RRAB 0 0 2 0 124 0 0 2 0 0 0 0 0 0
RRC 0 0 0 0 0 29 0 4 0 0 0 0 0 0
RRD 0 0 0 0 0 0 57 0 0 0 0 0 0 0
DSCUT 0 5 3 0 5 0 0 90 0 0 0 0 0 0
BCEP 0 0 0 0 0 0 0 30 57 0 0 0 0 0
SPB 0 0 0 0 0 0 0 0 0 47 0 0 0 0
GDOR 0 0 0 0 0 0 0 11 1 0 35 0 0 0
EA 0 0 0 0 0 0 0 1 0 0 0 161 17 0
EB 0 0 0 0 0 0 0 0 0 0 0 5 121 0
EW 0 0 0 0 0 0 0 0 0 0 0 3 9 59
TOT 144 42 195 95 129 29 57 139 58 47 35 169 147 59
CC(%) 97 86 96 100 96 100 100 65 98 100 100 95 82 100


Source LaTeX | All tables | In the text