A&A 468, 405-412 (2007)
DOI: 10.1051/0004-6361:20065544
The XMM-Newton extended survey of the Taurus molecular cloud
L. Scelsi1 - A. Maggio2 - G. Micela2 - I. Pillitteri2 - B. Stelzer2 - K. Briggs3 - M. Güdel3 - N. Grosso4 - M. Audard5 - F. Palla6
1 - Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
2 -
INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
3 -
Paul Scherrer Institut, Würenlingen and Villigen, 5232 Villigen PSI, Switzerland
4 -
Laboratoire d'Astrophysique de Grenoble, Université Joseph-Fourier, 414 rue de la Piscine, 38041 Grenoble Cedex, France
5 -
Columbia Astrophysics Laboratory, Mail Code 5247, 550 West 120th Street, New York, NY 10027, USA
6 -
INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
Received 4 May 2006 / Accepted 3 Augut 2006
Abstract
Aims. We have studied the X-ray source population of the Taurus Molecular Cloud (TMC) to search for new members of the Taurus-Auriga star forming region.
Methods. Candidate members have been selected among the X-ray sources detected in 24 fields of the XMM-Newton Extended Survey of the Taurus Molecular Cloud, having an IR counterpart in the 2MASS catalog, based on color-magnitude and color-color diagrams. Their X-ray spectral properties have been compared with those of known members and other X-ray sources in the same fields but without a NIR counterpart. A search for flare-like variability in the time series of all new candidates and the analysis of the X-ray spectra of the brightest candidates have been used to identify sources with a high probability of membership.
Results. We have found that 347 of 1909 detected X-ray sources have an infrared counterpart in the 2MASS catalogue. Among them, we have selected 57 sources that are consistent with being new pre-main sequence star candidates at the distance of the Taurus-Auriga star forming region; the X-ray spectral properties of this sample are, on the whole, similar to the properties of known TMC members and different from those of X-ray sources without an IR counterpart, most of which are likely to be of extragalactic origin. For 12 such candidates, the likelihood of membership is very high, based on the relatively high plasma temperatures derived from their X-ray spectra and/or the observation of powerful flares in their light curves.
Key words: X-rays: stars - Galaxy: open clusters and associations: individual: Taurus Molecular Cloud - stars: activity - stars: coronae - stars: pre-main-sequence - stars: luminosity function, mass function
Stellar population studies in star forming regions (SFR) are of fundamental importance to address issues related to the formation of stars and planets and the evolution of stellar properties during the early stages of their life. These issues include the determination of the stellar Initial Mass Function (IMF), which is an important test for theories of fragmentation and gravitational collapse of molecular clouds that lead to star formation, as well as the study of the strong magnetic activity (and its early evolution) responsible for the high levels of X-ray emission in young low-mass stars.
In this context, X-ray observations have proven to be an important method to
discover new pre-main sequence stars. Owing to their intense X-ray
emission, from 10 to 104 times the solar level
(e.g. Ozawa et al. 2005; Stelzer & Neuhäuser 2001; Feigelson & Montmerle 1999), and to the relatively low
interstellar absorption at these wavelengths, X-ray observations are
particularly efficient in detecting the population of young objects, namely
classical T Tauri stars (CTTs), i.e. stars still accreting material from a circumstellar disk, and "weak-lined'' T Tauri stars (WTTs), where accretion
has ended and whose disks are thin or even absent (Walter et al. 1988). Optical
and infrared surveys have so far identified many classical and "weak-lined'' T Tauri stars, although they may favour the detection of CTTs, because of their
strong H emission and IR excess. X-ray observations can serve as a complement to optical/IR searches for new young stars, especially those of very
low mass because they are more easily detected at X-ray wavelengths. Moreover,
since the WTTs are generally less absorbed than CTTs, the former are expected to
be more efficiently selected in X-ray surveys, thus helping to reduce the bias
mentioned above.
The detection of WTTs is also particularly important to estimate the fraction of stars at a certain age and in a certain environment having a circumstellar disk, and hence to estimate the disk life times. This information is fundamental to understanding the evolution of the angular momentum during the earlier phases of the stellar life, as well as for studies on the formation of planetary systems. In the nineties, several ROSAT studies (e.g., Neuhäuser et al. 1995; Alcala et al. 1995; Sterzik et al. 1995) detected a widely dispersed stellar population in Taurus, but also around other star-forming regions. These stars may have drifted away from their location of formation, or have been formed at their present location while the molecular clouds have dispersed. However, their status as weak-lined T Tauri stars has been debated, based on arguments that favor ages beyond the ZAMS age (e.g., Briceño et al. 1997).
The Taurus Molecular Cloud (TMC) is one of the nearest star forming
regions ( pc) and covers a large portion of the sky (
100 square degrees); the currently known members (
350) of this cloud complex
are spatially distributed with relatively low density (1-10 pc-3) and
their ages range typically from 1 to 10 Myr. The stellar mass function of this
star forming region has been investigated by Briceño et al. (2002),
Luhman et al. (2003a) and Luhman (2004), and recently updated by
Guieu et al. (2006) with the identification of 5 new very low-mass stars and 12 brown dwarfs; it appears different from the IMF of denser regions, such as
Orion and IC 348 (Luhman et al. 2003b; Muench et al. 2002, respectively), suggesting a possible dependence of the shape of the IMF on the environment. The
Taurus IMF shows a peak at higher masses (
vs.
in Orion and IC 348), very few stars more massive than
and a rather flat low-mass tail. A possible interpretation of
this unusual IMF has recently been given in terms of core collapse and
fragmentation, jointly with the ejection of very low- and substellar-mass
embryos (Goodwin et al. 2004). However, more complete studies of the Taurus
population are needed to assess the shape of the IMF with greater confidence,
especially at the low-mass end.
The densest regions of Taurus have been surveyed by XMM-Newton, thus
allowing a detailed study of the X-ray emission from young objects of this SFR.
In particular, XMM-Newton has recently observed 19 regions, with a circular field of view with a diameter of 30 arcmin and an exposure
time of
30 ks each; together with 8 more fields in the archive, these
observations are the basis for the XMM-Newton Extended Survey of the
Taurus Molecular Cloud (XEST), presented in detail in
Güdel et al. (2007a). The total surveyed area covers about 5 square degrees
of the TMC and contains about 150 known members, mainly classical and
"weak-lined'' T Tauri stars, but also protostars, brown dwarfs and a few Herbig
Ae/Be stars and other members with uncertain classification.
This work focuses on the search for new pre-main sequence candidates among the X-ray detected sources in the fields of this XMM-Newton survey, also employing the near infrared data from the 2MASS point source catalogue (Skrutskie et al. 2006). The paper is organized as follows: Sect. 2 summarizes the main information about the observations analyzed here, the data reduction and the source detection procedure; in Sect. 3 we describe the method used to identify potential new TMC members and present the list of such candidates, while we discuss the global X-ray properties of different samples of XEST sources in Sect. 4. We discuss the temporal variability of all newly identified candidates and the analysis of the EPIC PN spectra of the brightest candidates in Sect. 5. In Sect. 6 we discuss the possible implications of our findings on the Taurus IMF. Our results are summarized in Sect. 7.
The present work is based on X-ray data taken with the European Photon
Image Camera (EPIC MOS and EPIC PN, Strüder et al. 2001; Turner et al. 2001)
located in the focal plane of the X-ray telescopes on board XMM-Newton.
These non-dispersive CCD detectors, with spectral resolution
in the range 0.1-10 keV, and the mirrors provide
a spatial resolution of
4-5'' and effective areas of
1200 cm2 (PN) and
400 cm2 (MOS1 and MOS2) at 1.5 keV.
Among the observations analyzed in this study, the new ones (fields XEST-02 to
XEST-20) were obtained in two separate periods (August-September 2004 and
February-March 2005) and have PN exposure times ranging from 27 to 35 ks,
while the five fields in the archive were observed for longer times (35-63 ks, see below
the case of XEST-26). For all fields of the XMM-Newton survey of Taurus
we have data from all three EPIC instruments, except for the field XEST-26 (around SU Aur) which lacks the PN data (the MOS exposures for this observation are
127 ks). All PN and MOS cameras were operated in full
window mode, except for the field XEST-20 (around V773 Tau) where MOS2
was operated in small window mode, and the medium filter was applied in all
observations, with the exception of the fields XEST-26 and XEST-27 (around
Per) where the thick filter was used. All observations were
processed using SAS v6.1. We refer to the paper by Güdel et al. (2007a) for
more details about the observations and the data reduction. The same paper gives
also details relevant to the procedure used to detect X-ray sources in the EPIC images. In brief, source detection was performed on the sum of PN, MOS1 and MOS2 images, in three different bands, i.e.full (0.5-7.3 keV), soft (0.5-2 keV) and hard (2-7.3 keV) band; the choice of these bands was mainly based on considerations on the expected
spectra of the sources of interest and on the energies of strong features in
typical EPIC background spectra. Time filtering of the images, yielding the Good
Time Intervals (GTI), was applied to remove time ranges affected by high level
of background emission and to maximize the signal-to-noise ratio of weak
sources. Two source detection algorithms were used in sequence: the PWXDETECT
method by Damiani et al. (1997), based on the wavelet transform of the X-ray
image, was employed to locate source candidates which were confirmed or rejected
afterwards by a maximum likelihood fitting of the spatially-dependent PSF using
the SAS task EMLDETECT. The whole procedure was calibrated through extensive
simulations so as to give one expected spurious detection per field due to
fluctuations of the background. Moreover, clearly spurious sources were removed,
such as detections in the diffraction features of bright sources. Typically, the
number of X-ray sources in each field is between 50 and 100; in total, the
number of detected sources from this survey is about 2000. The detection
limit in each field depends on the off-axis angle and on the exposure time
obtained after excluding the time intervals of high background radiation; for a typical observation with an average background contamination level, the X-ray
luminosity detection threshold (at the distance of the Taurus Molecular Cloud)
is
9
1027 erg s-1 on-axis and
1.3
1028 erg s-1 at 10' off-axis for an X-ray source
with a characteristic thermal spectrum having average temperature of the order
of
10 MK and hydrogen column density
1021 cm-2. Most of the detected sources
have no infrared counterpart in the 2MASS catalogue and are likely of
extragalactic origin (see Sect. 4), while many of the X-ray sources
with IR counterpart lack any identification in the SIMBAD database. We detected
121 of 153 known TMC members in the analyzed fields; their X-ray properties are
discussed in companion papers by
Grosso et al. (2007b); Franciosini et al. (2007); Grosso et al. (2007a); Güdel et al. (2007b); Briggs et al. (2007); Telleschi et al. (2007b); Audard et al. (2007); Stelzer et al. (2007); Telleschi et al. (2007a),
while in the present work they have been used for comparison purposes with the
other sources.
In order to find possible new members of the Taurus-Auriga star forming region among the XEST sources, we identified these X-ray sources with NIR counterparts in the 2MASS point source catalogue, and plotted their position in IR color-magnitude and color-color diagrams.
After correcting the X-ray source coordinates for systematic offsets in the
boresight positions (Güdel et al. 2007a), we searched for possible IR counterparts to each X-ray source within a radius of 3'' from its centre.
This choice ensures 1 false association per field and leads
to 347 X-ray sources associated with a point-like source listed in the 2MASS catalogue.
We used the tables reported
in Güdel et al. (2007a) and the SIMBAD database to identify respectively known
members of the TMC and other sources already known to be non-members of the TMC.
At this stage, we considered all the sources
with accurately measured IR photometry in the J, H and bands,
i.e. we excluded a few 2MASS sources with upper limits of at least one magnitude, or whose measurements are flagged as inaccurate in the catalogue
because of contamination from extended sources or image artifacts. We report
the positions of the selected sources in the J vs.
and H vs.
diagrams (Fig. 1) together with the isochrones at 1, 5
and 10 Myr of Siess et al. (2000) and Baraffe et al. (1998), calculated for a distance of 140 pc. Assuming a geometrical extension of the molecular cloud of
15 pc leads to a spread of the tracks within
0.25 mag.
The J, H and
magnitudes are not corrected for reddening. Figure 2 shows the
J-H vs.
diagram. We selected sources satisfying the following
criteria: (i) position in the color-magnitude diagrams above or compatible with
the evolutionary models at 10 Myr within the error bars; (ii) J and H magnitudes brighter than 16.5 and 15.5 respectively, which allows us to also
include possible moderately absorbed brown dwarfs (the
evolutionary models of Baraffe et al. extend down to 0.02
)
and, at
the same time, to avoid significant contamination of the sample with background
objects; (iii) for sources lying on (or close to) the evolutionary models in the
color-magnitude diagrams, that would indicate low absorption if they are
members of this SFR, the same indication of low absorption must also be present
in the color-color diagram.
The sample of photometric candidate members selected in this way contains 57 XEST sources reported in Table 1. Figures 1 and 2 show that most of the candidates tend to occupy the portions of the diagrams indicating lower
absorption (or optically thinner disks) with respect to the known members, as we
could expect from a WTTs-dominated population. From Fig. 2 we also note that only two candidates (XEST-02-005 and XEST-06-045) show a clear IR excess, since they lie outside the region of the color-color diagram where stars with no
excess reddening are expected to be. However, several classical T Tauri
stars of the TMC are located within this region (Güdel et al. 2007a),
hence we can not rule out that new CTTs may be found among our candidates.
![]() |
Figure 1: Infrared color-magnitude diagrams with the observed (i.e. not dereddened) positions of the IR counterparts to the XEST X-ray sources. Known TMC members are shown as filled diamonds and asterisks (asterisks are protostars), candidate members as open squares and sources that are not selected as new candidates as open diamonds. Isochrones of 1, 5 and 10 Myr (solid and dashed lines), calculated at 140 pc, are superimposed. The reddening vectors from the extinction laws by Rieke & Lebofsky (1985) are also shown. |
Open with DEXTER |
Table 1 contains information about the main X-ray and IR properties of our candidates. Note that four candidates (XEST-23-065,
XEST-03-033, XEST-08-033 and XEST-08-049) are
reported twice in the table with different XEST names, since they were detected
by XMM-Newton in two overlapping fields. X-ray count-rates (CR) are
on-axis equivalent rates for the PN in the 0.5-7.3 keV band, averaged over
the entire observation; for the sources XEST-03-028,
XEST-07-005, XEST-17-043, XEST-27-084 and
XEST-08-003, that
show a quiescent phase preceeded or followed by a strong flare (see Sect. 5), we report also the values representing the quiescent
level. The X-ray luminosities, in the 0.3-10 keV band, were estimated from
count-rates as follows. Using data relevant to the known TMC members surveyed by
XMM-Newton (Güdel et al. 2007a),
was found to be
proportional to the PN on-axis count-rate with the conversion law:
The same law was assumed for our sample of candidates, for which the was estimated using approximate visual absorptions from the color-color
diagram
and
the relation for the interstellar medium between
and
.
In our Galaxy the ratio
is found in the range
1.8-2.2
1021 cm-2 (Predehl & Schmitt 1995; Ryter et al. 1975; Bohlin et al. 1978; Ryter 1996; Gorenstein 1975; Whittet 1981);
we used the conversion
1021 cm-2.
For the 5 flaring sources mentioned above,
refers to the quiescent emission. For 9 bright X-ray candidates (XEST-09-042, XEST-08-049,
XEST-20-071, XEST-08-014, XEST-09-033,
XEST-08-033, XEST-17-059, XEST-05-027 and
XEST-15-034) we report
the luminosities derived directly from spectral fitting of the PN data (Sect. 5, Table 2); we have verified that in these cases the
luminosities are in good agreement with the values obtained from converting
count-rates into
.
Individual errors on
are not reported,
due to the approximations of the relationship above, the uncertainty on the
estimated
and to the intrinsical variability of T Tauri stars
(typically within a factor of 2). Overall, the X-ray luminosities are
uncertain by 0.2-0.3 dex.
![]() |
Figure 2: Infrared color-color diagram with the observed (i.e. not dereddened) positions of known TMC members and candidate members (symbols are as in Fig. 1). The solid and dashed lines are the 10 Myr models by Baraffe et al. (1998) and Siess et al. (2000) respectively. The reddening vector is shown. The dotted lines bracket the region where stars with no excess reddening are expected to lie. |
Open with DEXTER |
In this section we compare the X-ray spectral properties of our TMC candidates
with those of known members and X-ray sources without IR counterparts. For this
study, we used the EPIC PN data in the 0.5-7.3 keV band. Source events
were extracted from circular regions whose extentions were calculated so as
to maximize the source signal-to-noise ratio and to exclude the events of
possible nearby contaminating sources: the extraction radii for the sources
listed in Table 1 are in the range
10''-50''. For the background photons, we used annular regions around the source and also excluded
the events in elliptical regions of close sources overlapping within the
annulus.
The analysis presented here has been conducted using diagrams analogous to
color-color X-ray plots: in particular, we employed the quantile-based method
proposed by Hong et al. (2004), which is useful when dealing with low-count
sources, as are most of ours. Instead of working with predefined energy
bands to derive hardness-ratios, a procedure which does not allow us to optimize
the statistics for all sources at the same time, we determined for each source spectrum the energy value
that divides the detected photons in predefined fractions of the total counts.
In particular, following Hong et al., we used the median (50%) and the
quartiles (25% and 75%) to define the quantile
(with
keV and
keV), and analogous
expressions for Q25 and Q75.
We report in the phase space
of Fig. 3 the
positions of known TMC members and candidates (left panel) and of the X-ray
sources without an IR counterpart (right panel). A theoretical grid predicted by
an absorbed one-component coronal model, with fixed abundances (0.3 times the
solar values of Anders & Grevesse 1989) and different temperatures (going
from
up to
)
and hydrogen column densities (from
cm-2 to 1023 cm-2), is superimposed. The
degeneracy around
(X,Y)=(-1.2,0.4) expresses the similarity between moderately
hot spectra with little absorption and cooler absorbed ones
(for details about these topics, see also the appendix in Grosso et al. 2007b).
At high temperatures, the degeneracy is removed and the effect of absorption is
to shift the model points towards the upper right part of the plot. Note,
however, that in this discussion the theoretical grid served only as a reference
to understand where sources with thermal spectra should be expected to
lie, due to the simplicity of the model and the uncertainty on the computed
quantities. In particular, care must be taken in
deriving temperature and hydrogen columns from the positions of the sources with
respect to the grid in such diagrams, especially for high-statistics sources,
since active stars usually have more complex spectra that cannot be described
by a single-component model.
The large spread of the points, above all for the X-ray sources without IR counterpart, is dominated by the large error bars for the faintest sources.
Typical errors for faint sources with 30 and
50 counts are,
respectively,
0.25 and
0.15 on both the quantities on the X and
Y axes in Fig. 3. However, we clearly observe
that the sources without IR counterparts have in general spectra harder than
those of TMC members and candidates; this trend is more evident in
Fig. 4, where only sources with more than 80 counts, and
hence smaller errors, are plotted. The former sample (i.e. X-ray sources without
IR counterpart) is very likely dominated by extragalactic objects, as suggested
by the fact that power laws that describe the spectra of AGNs lie exactly in the
portion of the phase space occupied by these sources.
![]() |
Figure 3:
Quantile space for X-ray sources with more than 10 net counts in the
PN: known members (filled diamonds) and candidates (open squares) are shown in
the left panel, X-ray sources without an IR counterpart are shown as crosses in
the right panel. A theoretical grid relevant to an absorbed, isothermal and
optically thin plasma is superimposed, with abundances fixed to 0.3 times the
solar values of Anders & Grevesse (1989), calculated for temperatures going
from
![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 4: Same as the previous figure, but for sources with more than 80 net counts in the PN. The error bars are generally smaller than those shown in the lower right part of the plots, typical of sources with about 80 counts. |
Open with DEXTER |
We also note that the distributions of candidates and TMC members in this
quantile space are indistinguishable at both statistics we have shown, while
they are different from the distribution of the X-ray sources without IR counterpart. It is also interesting to note that the sub-sample of known TMC members lying in the portion of the grid with high temperatures and hydrogen
columns (essentially defined by
)
is
composed of stars with high AV and/or IR excess, as shown in the color-magnitude
diagram of Fig. 5, classified as classical T Tauri stars.
The candidates found in this work mainly lie at
,
where the TMC members are both classical
and weak-lined T Tauri stars, with a slight predominance of WTTs. This result,
together with the color-magnitude diagram of Fig. 1, suggests that our sample of candidates may be dominated by WTTs.
![]() |
Figure 5:
IR color-magnitude diagram for the TMC members shown in the left panel
of Fig. 3: filled and open diamonds refer to stars lying, in
the quantile space, at
![]() |
Open with DEXTER |
Since young stellar objects frequently show variability of their X-ray emission
on short (ks) time scales and also exhibit powerful explosive events
(Imanishi et al. 2001; Stelzer et al. 2000),
we analysed the photon time-series of all candidates in Table 1 to
search for variability, and in particular the presence of flare-like features,
supporting the coronal origin and youth of these sources. We used a maximum
likelihood algorithm (MLB) that searches for variability in unbinned series of
photon arrival times. Details of the method and its application to XEST data
are described by Stelzer et al. (2007); it is similar to the Scargle method
(Scargle 1998), but is based on a maximum likelihood procedure instead
of the Bayesian approach. In brief, the algorithm identifies time intervals of
constant signal in photon time series under the assumption of Poisson noise.
Background subtraction is done on the photon events list individually for each
source before the algorithm is applied. The resulting "source-only'' light curve
consists of segments with different intensity levels. The technique has two free
parameters, the confidence level for the intensity changes and the minimum
number of counts (
)
that define a segment. Small numbers for
facilitate the detection of variability in faint sources, but have
also a tendency to find variations that are likely spurious.
Stelzer et al. (2007) find in their variability analysis of known TMC members
that
is an adequate compromise.
![]() |
Figure 6: Background-subtracted light curves (points with error bars) of six sources showing flares, obtained adding the PN, MOS1 and MOS2 counts. The points without errors represent the background emission. |
Open with DEXTER |
This method indicates that 16 of the 57 XEST sources identified as candidate TMC members are variable in the broad band (0.3-7.8 keV) at the 99% level; they are flagged in Table 1. Among them, the sources XEST-03-028, XEST-07-005, XEST-08-014, XEST-17-043, XEST-27-084 and XEST-08-003 show intense flares in their light curves (Fig. 6). We conclude that these 6 sources have higher probability of resulting true members of the Taurus Molecular Cloud.
Eleven XEST sources among the candidates listed in Table 1 have
enough (1000) net counts in the PN camera to allow global fits
of their spectra. Three of them are the flaring sources XEST-08-003, XEST-08-014
and XEST-27-084 mentioned above, while XEST-08-049 and
XEST-09-033 are identified with the same 2MASS object. After the
response functions were built with the SAS tasks arfgen and rmfgen, we tried to
fit in XSPEC the spectra of these sources using both an absorbed power law and
an absorbed, optically thin plasma based on the APEC code (Smith et al. 2001),
with one (or two) isothermal component(s). The abundances of the coronal models
were fixed at values typical for pre-main sequence or extremely active stars,
based on results from
Argiroffi et al. (2004); Scelsi et al. (2005); García-Alvarez et al. (2005); Telleschi et al. (2005)
. We found that all these spectra are well described by
coronal models (Fig. 7) but not by power laws (except the source XEST-05-027 discussed below), thus excluding an extragalactic nature.
The parameters of the best-fit models are listed in Table 2. The
model temperatures are relatively (or very) high and characteristic of young
active stars (e.g. Preibisch et al. 2005); the X-ray luminosities derived from
the measured unabsorbed flux and assuming a distance of 140 pc are in the
range
1029-3
1030 erg s-1, also typical of active stars
(Stelzer & Neuhäuser 2001; Preibisch et al. 2005).
Therefore, based on these considerations, we conclude that all these sources
have a higher probability of being true TMC members.
Table 2:
Parameters of the best-fit coronal models (with 1
errors) for the brightest candidate members.
is the EM-weighted logarithmic average temperature, defined as
(see also Güdel et al. 2007a).
The model flux (in the 0.3-10 keV band ) is unabsorbed and the
luminosity is calculated from it assuming d=140 pc.
The photon spectrum of XEST-05-027 can also be described by an absorbed power law which provides
(17 d.o.f.) and thus formally a better fit than the coronal model. The derived hydrogen column density
(
1.3
1022 cm-2) and power law index (
-2.2) are
values typically found for AGNs (e.g. Hasinger et al. 2001), yet the infrared
magnitudes of the IR counterpart would be particularly bright for an extragalactic source, and this makes us confident that the nature of this source
is more likely a stellar one. The average temperature of the coronal model is
very high (
48 MK), but the light curve is consistent with a constant
emission, as confirmed by both the MLB and the Kolmogorov-Smirnov tests. So,
although we cannot completely rule out an extragalactic origin, this heavily
absorbed source deserves attention in the future. An alternative possibility is
that a chance association between a stellar IR source and an X-ray extragalactic
source occurred in this case
.
Most of the candidates with a higher probability of membership (8 of 12) are located in three adjacent fields: XEST-08, XEST-09 and XEST-17 (for a map of the TMC and the XEST fileds, see Fig. 1 in Güdel et al. 2007a); these fields do not seem to be special with respect to the others, and the density of known members is not particularly high in them. Hence, our finding may deserve further investigation.
In this section we explore the possible implications of our candidate
members on the Taurus IMF. To estimate the masses of the selected sources, we
evaluated visual extintions
from the color-color diagram
(Fig. 2), then we used these extintions to place the
stars in Fig. 1 on the evolutionary tracks by
Baraffe et al. (1998), and finally we searched for compatible values of mass and
age in both color-magnitude diagrams (Fig. 1). Note,
however, that these estimates may be affected by large uncertainties, due
to the estimated values of
,
to the assumption of no IR excess and
also to the uncertainties in the evolutionary models.
Consider first the sub-sample of candidates with available PN spectra. We noted
that the visual extinctions obtained from the IR color-color
diagram are consistent with those calculated from the hydrogen column densities
using the conversion
cm-2for all sources listed in Table 2, with the exception of
XEST-20-071; we exclude this star from the following discussion
together with the source XEST-05-027 because the two pairs of mass and age indicated by
the two color-magnitude diagrams were largely incompatible. The general
agreement between
and
implies no significant IR excess
due to a circumstellar disk for these sources. After dereddening, their
positions in the color-magnitude diagrams yield estimated masses in the range
0.2-0.6
and ages ranging from
1 to
10 Myr, in agreement with those of known TMC members; this result
implies that our bright, most probable members are not very low-mass stars, and
hence the known difference between the shape of the Taurus IMF and those of
Orion and IC 348 at very low masses (see, for example, Fig. 1 in Goodwin et al. 2004) will not be reduced.
![]() |
Figure 8:
X-ray luminosities versus masses for the 48 candidates with mass
estimates. Crosses refer to the candidates with higher probability of
membership. ![]() ![]() |
Open with DEXTER |
Since the above sample includes only the X-ray brightest sources, it may
not come as a surprise that they are relatively massive pre-main sequence
candidates, because a correlation between mass and
has been found in
Taurus (Güdel et al. 2007a) and also in other star forming regions
(e.g. Preibisch et al. 2005; Preibisch & Zinnecker 2002, for the cases of IC 348 and Orion, respectively).
Therefore, the major implications for the Taurus IMF could come from the
faintest candidates. Since we have no estimates of
for these sources
to be compared with the
,
we assumed that approximate
values can be derived from the color-color diagram and we used these estimates
to deredden their positions in the color-magnitude diagrams. This procedure was
applied to all the X-ray faint sources, except for XEST-02-005 which clearly
shows IR excess and is therefore excluded. For 6 sources we could not obtain
compatible mass and age values from both color-magnitude diagrams, and hence
they are also excluded from the following discussion
. In total, we have 48 candidates
(including the X-ray bright ones) with self-consistent extintions, mass and age
estimates, which are plotted in Fig. 8: we observe that faint
candidates span a relatively large mass range
(
)
but
they are not clustered at very low masses. We also note that most of the
candidates follow the
-mass correlation derived for the other TMC members (Güdel et al. 2007a). That is independent support for these candidates
being TMC members, and is especially true for the most probable candidates. Only
those in the lower-right corner (all of them being "faint candidates'') are
suspiciously off.
In conclusion, our analysis suggest that the shape of the Taurus stellar IMF could not be affected significantly at the very low-mass end, even with the addition of all these candidates. However we recall that the masses derived in this section may be affected by large uncertainties; moreover it is quite possible that several candidates are not true TMC members (possibly the low-luminosity sources with apparently high mass, from Fig. 8), hence more detailed studies of these sources are required before any reliable assertion on the very low-mass end of the Taurus IMF can be stated.
As X-ray emission is particularly intense during the early stages of the
stellar evolution, in this work we have employed X-ray data from the XEST survey
and the 2MASS infrared data to identify possible new pre-main sequence stars
belonging to the Taurus-Auriga star forming region. More precisely, in the 24 regions of the TMC observed by XMM-Newton and analyzed here, covering an area of 5 square degrees, we identified 57 X-ray and IR sources compatible with being young stellar objects of this molecular cloud, and we found 12 sources among them with high probability of being TMC members based on
the analysis of PN spectra and/or the presence of flares in the light curves.
From the infrared color-magnitude and color-color diagrams, we note that most of
these candidates could be weak-lined T Tauri stars that are less efficiently
selected from population studies in the optical and infrared bands.
If not TMC members, these sources might be foreground young main sequence
stars or background active stars (M-type stars older than the Taurus
population, binary RS CVn systems, bright single giants); the candidate sample
might also include some extragalactic object among the faintest IR and X-ray
sources; there is also a relatively small probability of chance associations
between an IR stellar source and an extragalactic X-ray source. Optical
follow-up observations aimed at collecting spectra for measurements of the
Li 6708 Å and H
lines and radial velocities, and for spectral
classification and effective temperatures determination, will be performed
to determine the nature of the optical/IR counterparts for the X-ray
sources identified in this work, and hence to confirm or reject their
membership of the TMC; although we do not expect that all these sources will be
confirmed as new members, these observations could lead to a significant
increase of the number of WTTs in these surveyed fields, whose present number is 49.
Acknowledgements
We acknowledge financial support by the International Space Science Institute (ISSI) in Bern to the XMM-Newton XEST team. The Palermo group acknowledges financial contribution from contract ASI-INAF I/023/05/0. X-ray astronomy research at PSI has been supported by the Swiss National Science Foundation (grants Nos. 20-66875.01 and 20-109255/1). M.A. acknowledges support from NASA grant NNGO5GF92G. This research is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). This publication makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Further, our research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.
Table 1:
List of all candidate members. "XEST id'' refers to the name of
the X-ray source in the XEST catalogue (Güdel et al. 2007a, the first 2 digits mark the
field of the survey). RA X and Dec X are the coordinates of the
X-ray source (corrected for boresight shift). CR is the equivalent on-axis
count-rate for the PN in the 0.5-7.3 keV band, averaged over the entire
observation (see notes for the quiescent level of the sources with strong
flares).
is estimated in
the 0.3-10 keV band from CR (see text), except where noted. A "y'' in the
column "var'' means that the X-ray source was found to be variable according to
the maximum likelihood algorithm described in Sect. 5. The
7
column is the designation of the infrared counterpart in the 2MASS catalogue; "offset'' is the distance between the positions of the X-ray source
and its IR counterpart; J, H and
are the infrared magnitudes
reported in the 2MASS catalogue. Sources in bold face are the most probable
candidates on the basis of light curve and/or spectral analysis
(Sect. 5).
![]() |
Figure 7:
EPIC PN spectra of the brightest candidate members (points) with
the best-fit coronal models (see Table 2 for the parameters of
the models). The lower panel in each plot shows the residuals in unit of ![]() |
Open with DEXTER |
![]() |
Figure 7: continued. |
Open with DEXTER |