A&A 464, 879-883 (2007)
DOI: 10.1051/0004-6361:20066506
N. de Vries1 - I. A. G. Snellen1 - R. T. Schilizzi1,2 - M. D. Lehnert3,4 - M. N. Bremer5
1 - Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
2 -
International Square Kilometre Array Project office, Postbus 2, 7990 AA, Dwingeloo, The Netherlands
3 -
Max-Planck-Institut für extraterrestrische Physik (MPE), Postfach 1312, 85741 Garching, Germany
4 -
Laboratoire d'Études des Galaxies, Étoiles, Physique et Instrumentation, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon, France
5 -
Department of Physics, Bristol University, H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
Received 4 October 2006 / Accepted 15 December 2006
Abstract
Context. Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky'' sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources.
Aims. As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined.
Methods. Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample.
Results. We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range
,
while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with
.
The redshifts of 21 host galaxies have been determined in the range
0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars.
Key words: galaxies: active - galaxies: distances and redshifts - galaxies: photometry
Gigahertz Peaked Spectrum (GPS) radio sources are among the brightest radio sources in the sky. They are compact objects characterized by a turnover in their radio spectra at about 1 GHz in frequency. Their radio morphologies are small-scale versions of the well known extended Fanaroff & Riley (FR) I/II radio sources, but with a physical extent of only 10-100 pc, well within the central regions of their host galaxies (Stanghellini et al. 1999). To explain the compactness of these sources two scenarios were proposed: (1) these objects are very young radio-loud active galaxies which may evolve into kpc-sized Compact Steep Spectrum (CSS) sources and eventually grow to become FR I/IIs; (2) they are "frustrated'' radio sources, millions of years old, but confined by a dense interstellar medium (Baum et al. 1990). In recent years compelling evidence has accumulated in favour of the youth scenario. VLBI monitoring of the archetype GPS sources, that began in the early 1980 s, has now conclusively shown these sources expand in size, implying source ages of 102-3 years only (Owsianik et al. 1998; Owsianik & Conway 1998; Tschager et al. 2000; Polatidis & Conway 2003), in good agreement with spectral age estimates (Murgia 2003). Recently Vink et al. (2006) have shown that their optical line emission is relatively underluminous, exhibiting a possible trend with radio source age. This is consistent with the fact that the Strömgren sphere should still be expanding in these objects, and that we are witnessing the birth of their narrow emission line regions. If indeed GPS galaxies are young, as now seems to be very likely, they form the key objects to study the early evolution of powerful radio-loud AGN, and the trigger of nuclear activity. In this paper we present new optical observations of a sample of GPS galaxies, aimed at identifying all host galaxies and determining their redshifts. Section 2 defines this sample, Sect. 3 describes the observations, and the results are presented and discussed in Sect. 4.
Snellen et al. (2002) have defined a sample of bright GPS sources in the southern/equatorial sky, representing the counterpart of the sample of Stanghellini et al. (1998), although somewhat deeper. High flux density GPS sources are rare and therefore all sky coverage is needed in order to obtain a statistically significant number of sources. Furthermore, access to large optical telescopes is better for the southern hemisphere, at least for European astronomers. The selection criteria of the sample are described in detail in a previous paper (Snellen et al. 2002). Summarizing, it consists of 49 sources selected from the Parkes multifrequency survey (PKSCAT90, Wright & Otrupcek 1990), with
,
and
Jy. The sample only consists of GPS radio sources associated with galaxies since GPS quasars do not seem to be related to GPS galaxies, despite having similar radio characteristics, and may not be young (e.g. Snellen et al. 1999). Before the current work, 75% of the radio sources had been optically identified with a host galaxy and 40% had known redshifts.
Optical CCD imaging and spectroscopy were also performed using the ESO 3.6 m Telescope at La Silla, in Chile, on March 23 and 24, 2004. For all observations we used the ESO Faint Object Spectrograph and Camera (EFOSC II), which has a 2048 2048 CCD detector with 15
m pixels resulting in a scale of 0.157
/pixel and a field size of 5.4
5.4
.
Spectroscopic observations were carried out in long slit mode with a slit width of 1.2
,
using the EFOSC grism #6, which has a wavelength coverage of 3860-8070 Å and a dispersion of 137 Å/mm or 2.06 Å/pixel. The slit was always oriented near the paralactic angle. The reduction of the spectra was carried out in a similar way to the VLT data.
Photometric observations were carried out in Gunn r-band (EFOSC filter r#786). The reduction of the images was carried out in a standard way using NOAO's IRAF reduction software. Astrometry was performed using data from the USNO-B1.0 Catalog, extracted with the VizieR catalogue access tool. For each image, catalogued positions of at least ten stars were used. With the IRAF procedure CCMAP, the equatorial coordinates were determined with errors always well within one pixel. Optical identifications were found, within the 1-
uncertainty ellipse, for all seven radio sources. Photometry was carried out using the IDL procedure APER with the aperture diameter set to 2.51
(16 pixels). The magnitude scale was calibrated using Landolt standard stars, with their Cousins
magnitudes converted to Gunn r using the conversion formula from Schombert et al. (1990):
![]() |
(1) |
Earlier optical observations of the GPS source PKS J0210+0419 (Snellen et al. 2002), did not result in an identification, with a lower limit of
mR > 24.1. We therefore observed this source in -band using the SOFI near-infrared camera on ESO's New Technology Telescope (NTT). SOFI is equipped with a Rockwell
detector that provides images with a pixel scale of
/pixel, and a field of view of about
(Large Field imaging mode). The SOFI
filter has a central wavelength of 2.162
m and a width of 0.275
m. Details of the
-band observations of PKS J0210+0419 and of other sources in the sample will be published in a following paper, however we present the
-band identification and magnitude of PKS J0210+0419 (
)
here for completeness.
In total, eleven previously unidentified sources in the sample have been observed in R-band with the ESO 3.6 m and VLT telescopes. All were optically identified, with
.
Including the one identification in K-band (PKS J0210+0419), this means that the Parkes half-Jansky sample of GPS galaxies is now completely identified. Note that we have left one source (PKS J1600-0037) out of our statistical sample, because it is located too close to a 12th magnitude star to make an optical identification possible. Since this is a random occurence, it does not introduce any selection effects, so the sample will remain statistically complete. The results of the photometric observations are given in Table 1; in Col. 1 the source name, in Col. 2 the exposure time, in Col. 3 the observed Gunn r-band magnitude with its error, and in Col. 4 the observed or deduced Cousins
-band magnitude.
We have also taken deep spectra of 24 objects in total. These have resulted in twenty secure redshifts, based on two or more emission or absorption lines, all in the range 0.474 < z < 1.539. One spectrum (PKS J1556-0622) resulted in a tentative redshift (z=1.195), based on only one line. We assumed the line to be [OII] 3727 Å, because of the resemblance between this spectrum and those of PKS J2339-0604 and PKS J2212+0152, and the absence of plausible alternatives. A further nine sources in the sample (19%) remain without redshift. The results of the spectroscopic observations are given in the appendix (Table B.2); in Col. 1 the source name, in Col. 2 the exposure time, in Col. 3 the name of the telescope used, in Cols. 4-7 respectively the name, rest wavelength, observed wavelength and rest-frame equivalent width of the identified spectral features, and in Col. 8 the derived redshift for each identified spectral feature and for each source. All spectra are also shown in the appendix (Fig. B.1).
Table 1: Details of the photometric observations.
Now that we have significantly increased the number of GPS galaxies with known redshifts, particularly around redshift ,
it is interesting to review the R-band Hubble relation as previously discussed by Snellen et al. (1996a) and O'Dea et al. (1996). For this purpose we combined our southern/equatorial sample with the northern sample of GPS sources of Stanghellini et al. (1998), excluding all those objects identified with quasars. Spectroscopic observations of two sources from our sample (PKS J1203+0414 and PKS J1506-0919) reveal broad emission lines (
104 km s-1) and non-thermal emission. Technically these sources are now identified as quasars, and have been omitted from the sample. The resulting R-band Hubble diagram of GPS galaxies (solid squares) is shown in Fig. 1. For comparison, 3C radio galaxies (open circles) from a compilation of samples (Best et al. 1997; Eales 1985; and de Koff et al. 1996) and a subset of the "Luminous Red Galaxies'' (LRGs; small circles) sample (Eisenstein et al. 2001) from the Sloan Digital Sky Survey (SDSS) are shown. If necessary, the magnitudes were converted to "total magnitudes'' in Cousins
.
Note the one GPS source (PKS J1604-2223, with
and z = 0.141) that is over two magnitudes fainter than the general population. This is much too faint for a typical powerful AGN host galaxy, for which a number of explanations could be given. Although the source is located in a region with high galactic extinction, it is unlikely that this is the reason for the offset, since the object is also over two magnitudes fainter in K-band (de Vries et al. in prep.) than expected from the K-band Hubble diagram (as presented by Snellen et al. 1996b). Of course there is always the possibility that a foreground galaxy is located between us and the radio source. This would also explain why the optical spectrum shows no emission lines or signs of nuclear activity. Alternatively, it could be that the source is not a typical young powerful AGN, but some other object that happens to have a similar radio spectrum. Although PKS J1604-2223 is shown in Fig. 1, it is left out of any further analysis.
![]() |
Figure 1:
Cousins ![]() |
Open with DEXTER |
![]() |
Figure 2:
( Left) Absolute magnitudes (without k-correction, ![]() |
Open with DEXTER |
Now that the R-band Hubble relation is better sampled at
it is clear that the new data points systematically fall below the original fit (dotted line) of Snellen et al. (1996a). Since this relation is often used to estimate redshifts of GPS galaxies for which only photometric R-band data are available, it is valuable to determine a relation that holds for a larger redshift range, out to
.
We performed a linear least squares fit to the current data and found the relation:
![]() |
(2) |
![]() |
(3) |
Furthermore the new data at
confirm that GPS galaxies are on average 1.0 mag fainter in this redshift range than 3C radio galaxies, as was initially claimed by Snellen et al. (1996a). This agrees with the hypothesis that GPS galaxies are redder, due to the lack of the extra, blue light associated with the radio-optical alignment effect (Chambers et al. 1987; McCarthy et al. 1987; Best et al.1997). The LRGs form a volume limited sample of the most luminous, intrinsically red galaxies out to
.
They are selected on the basis of colors and magnitudes, and are thought to represent the most massive early type galaxies, many of which are classified as "Brightest Cluster Galaxies''. Figure 1 shows that host galaxies of GPS radio sources have similar optical luminosities to LRGs, indicating that powerful young radio sources are hosted by the most massive early type galaxies. Note that the flattening of the distribution of LRGs at low redshift is probably due to the known problem that SDSS subtracts too high background levels for large sources, which can result in a magnitude difference of up to
1 mag.
All variables in Eq. (4) are determined in a straightforward way from the observations and adopted cosmology, except for the k-correction. We therefore determined
for each galaxy in the sample and determined a range of possible k-corrections, depending on the age and metallicity of the stellar population. For these we used the model galaxy SEDs by Worthey (1994). In Fig. 2 we show
of the combined samples (see Sect. 4.1) of GPS galaxies (solid squares) and 3C galaxies (open circles) as a function of redshift. The three solid lines show the expected trend in
for a stellar population with a formation redshift
and metallicities [Fe/H] of 0.3, 0.0, and -0.225 compared to solar. In Fig. 3 we show the same data, overplotted with the k-correction for a stellar population with solar metallicity and a range of formation redshifts of
,
2.0, and 3.0.
These figures show that the data are in best agreement with a recent formation redshift of 1.5-2.0 (with a possible range of metallicities). However, we do not believe that the host galaxies really are that young, since GPS galaxies are always classified as early type galaxies, which are generally thought to have formed at higher redshifts (). In addition, Fig. 1 also indicates that GPS galaxies are old, massive, early type galaxies. Therefore we interpret this result as evidence for starburst activity and/or AGN induced light. We note that, although the optical/UV contribution from the alignment effect appears significantly smaller in GPS galaxies than for classical 3C radio galaxies, it does not exclude such AGN induced light being present at a low level. This extra blue light would brighten galaxies the most at high redshifts, where the R-band probes the rest-frame UV, and therefore could mimic a young stellar population and low formation redshifts. A thorough investigation using deep optical and infrared spectra will be needed to determine the possible contributions from the AGN and young starbursts to the overall galaxy spectrum.
Acknowledgements
This research has made use of observations collected at the ESO/Paranal Very Large Telescope and the ESO/La Silla 3.6 m Telescope, and made use of the VizieR catalogue access tool, CDS, Strasbourg, France (Ochsenbein et al. 2000). This publication makes use of data products from the USNO-B1.0 Catalog and the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
![]() |
Figure A.1: R-band image of PKS J0407-2757 taken from Snellen et al. (2002). The GPS radio source is located in the South Western object, as indicated with the plus sign. Most of the line emission originates from the object North Eastern of the radio source. |
Table B.1: The radio and optical properties of objects in the southern/equatorial sample of GPS galaxies.
Table B.2: Details of the spectroscopic observations.