A&A 422, 987-999 (2004)
DOI: 10.1051/0004-6361:20034086
M. Eriksson 1,2 - S. Johansson 2 - G. M. Wahlgren 2
1 - University College of Kalmar, 391 82 Kalmar, Sweden
2 - Lund Observatory,
Lund University, Box 43, 22100 Lund, Sweden
Received 16 July 2003 / Accepted 31 March 2004
Abstract
The latest outburst of AG Peg has lasted for 150 years, which makes it the slowest nova eruption ever recorded.
During the time of IUE observations (1978-1995) line profiles and intensity ratios of the N V and C IV
doublet components changed remarkably, and we discuss plausible reasons.
One of them is radiative pumping of Fe II which is investigated by studying the fluorescence lines from pumped levels.
Three Fe II channels are pumped by C IV and one by N V.
The pumping rates of those Fe II channels as derived by the modeling agree well with the strengths of
the Fe II fluorescence lines seen in the spectra.
We model the C IV and N V resonance doublets in IUE spectra recorded between 1978 and 1995
in order to derive optical depths, expansion velocities, and the emissivities of the red giant wind, the white
dwarf wind and their collision region.
The derived expansion velocities are 60 km s-1 for the red giant wind and
700 km s-1 for the
white dwarf wind.
We also suggest a fast outflow from the system at
150 km s-1.
The expansion velocity is slightly higher for N V than for C IV.
Emission from the collision region strongly affects the profile of the N V and C IV resonance doublets
indicating its existence.
Key words: atomic processes - line: formation - line: profiles - stars: binaries: symbiotic - stars: individual: AG Peg
Table 1: IUE spectra used in this work.
The star AG Peg (BD+114673) underwent a nova eruption sometime between 1841 and 1855
(Lundmark 1921).
The luminosity increased from about 9th to a maximum of about 6th mag around 1885.
During the first 70 years after detection of the nova eruption the spectrum of AG Peg slowly evolved
from a P Cygni type (H I, He II emission lines showed P Cygni profiles) to a combined
spectrum originating from a hot component, a nebular region and a M 3 red giant (Merrill 1951).
AG Peg is also classified as a symbiotic nova (Allen 1980), and it
is believed to be the slowest nova ever observed, as the bolometric luminosity was
nearly constant until the late 1970s when it started to decline.
There has been an ongoing discussion about the wind structure in symbiotic systems in general (Girard & Willson 1987) and in AG Peg in particular (Vogel & Nussbaumer 1994,1995). This is of great interest since some symbiotic systems could be progenitors of type Ia supernovae (Munari 1994; Boffi et al. 1994). It is of basic importance to model the wind structure for our understanding of the observed line profiles and spectral variability in symbiotic systems. The strong nebular emission lines in the spectrum of AG Peg have changed significantly between 1978 and 1995. This gives an excellent opportunity to derive parameters such as wind velocities, temperatures and opacities in different regions of the symbiotic nebula.
In the present work we have fitted theoretical line profiles to the C IV and N V resonance doublets observed in IUE spectra to derive both the wind structure and evolution of the nebula during the time 1978-1995. The starting values of the parameters used in the theoretical spectra, such as wind velocities, optical depths and fluxes, are based upon previous work on AG Peg as well as assumptions made in this work. These parameters were varied in narrow ranges that satisfy our assumptions in order to get better agreement between observed and theoretical spectra. It is also our intent to understand to what extent the pumping of Fe II affects the line profiles and intensity ratios of the C IV and N V fine structure components. We have studied the flux in the Fe II fluorescence lines generated by the C IV and N V doublets. Selective pumping of Fe II was incorporated in the theoretical spectra and the possible ranges for the wavelengths and optical depths of the pumping channels were set by analysing the corresponding fluorescence lines. As a result of fitting many IUE spectra we were able to detect changes in the system and determine some parameters to good accuracy.
The spectra used in this study are listed in Table 1. Images from the Short Wavelength Prime (SWP) camera provided the line profiles for the C IV and N V doublets and a few pumped channels of Fe II. The bulk of the Fe II fluorescence lines are located at the wavelengths of the Long Wavelength Redundant (LWR) and Long Wavelength Prime (LWP) cameras. The long wavelength spectra chosen for analysis occur at epochs as close as possible to the SWP spectra. Unfortunately, there are large gaps in the temporal coverage of the data, with no observations of AG Peg having been taken from January 1982 until September 1989, with the exception of December 1986. The available spectra had been obtained for a range of exposure times and some of them are affected by saturation for strong lines, including the C IV and N V doublets.
The isoelectronic ions C3+ and N4+ have the same atomic structure, and the resonance doublet in C IV and N V corresponds to the transition 2s 2S-2p 2P. The resonance lines in C IV appear at 1548.2 Å ( J=1/2-J=3/2) and 1550.8 Å (1/2-1/2) and in N V at 1238.8 Å (1/2-3/2) and 1242.8 Å (1/2-1/2). The intensity ratio in the doublet is expected to follow the statistical weights, i.e. I(1/2-3/2)/I(1/2-1/2) = 2, which is verified by theoretical calculations of the Einstein A-values (Warner 1968). Besides the strictly parity-forbidden lines of multiply-charged ions the C IV and N V resonance doublets are important temperature indicators and can be used for diagnostics of the dynamics of energetic stellar winds. They have therefore been a popular target in satellite UV observations, in particular with IUE. The lines often show a complicated multi-component structure.
![]() |
Figure 1: The temporal development of the C IV resonant doublet. The data from 1986 are not incorporated in the figure since the doublet was saturated. The three absorption features in early IUE spectra discussed in the text are marked in the figure. The spectra have been shifted in relative intensity for plotting purposes and the intensity of the two uppermost spectra in the figure are multiplied by a factor of two. |
Open with DEXTER |
In our model we have included four regions in AG Peg contributing to the composite line structure of the C IV and N V resonance lines. Line emission results from the white-dwarf wind, from two separate velocity components in the red-giant wind and from the collision region. The total line profile is also affected by blueshifted absorption from the wind regions as well as the surrounding nebula, producing P Cygni profiles.
The expected intensity ratio of the two fine-structure lines in C IV and N V is 2,
but in several symbiotic systems this ratio has been observed by Michalitsianos et al. (1992) to be noticeably less
than 2, sometimes even below 1. They studied the possible
effect on the profile of the C IV 1548.2 line from resonant photoexcitation
of Fe II by C IV photons, as observed in IUE spectra of RR Tel (Johansson 1983). However,
they could not explain the intensity anomaly based on this Bowen-type process.
The IUE spectra illustrate that intensity anomalies are clearly present in AG Peg,
especially during the years 1978-1981 when the intensity ratio is less than 1
(Fig. 1). In Sect. 4 we discuss in detail all Fe II pumping processes observed in AG Peg
involving the C IV and N V resonance lines.
A recent explanation for the strange intensity ratio of the C IV and N V lines observed in symbiotic stars has been presented by Yoo et al. (2002). They proposed that, if bipolar winds are present in the system, double scattering can occur, where intensity is transferred from the blue line to the red line due to an internal Doppler effect. The process requires an acceleration that produces a bipolar wind velocity exceeding the fine-structure interval of the doublets, which corresponds to 500 km s-1 for C IV and 970 km s-1 for N V. The double scattering process has not been considered in this work, which we comment on in Sect. 5.
We describe below in detail the time history of the C IV and N V line profiles. The two fine-structure components of each spectrum are called the blue and the red line, respectively, based on their relative wavelengths. The different emission and absorption contributions in each line will be called components, e.g. WD (white dwarf) component and RG (red giant) component.
![]() |
Figure 2: The temporal development of the N V resonant doublet. The intensity of the spectrum recorded on 13 Oct. 1978 is multiplied by a factor of 4 and the spectrum from 9 Jan. 1981 is multiplied by 2. The sharp, deep absorption features in the two uppermost spectra are data artefacts. |
Open with DEXTER |
Three absorption features (marked by vertical lines in Fig. 1)
are observed in the blue wing of the red line. The one closest to the emission peak is weak and is the
P Cygni absorption component of the RG narrow line, since it is of equal width
(0.2 Å) and shifted only by
km s-1 from the emission component.
The second absorption line is shifted by
km s-1 and broader than
the RG component. It could be due to a fast outflow from the red giant as suggested
for the symbiotic binary V2116 Oph (Chakrabarty et al. 1998). The third absorption line is
broader (1.2 Å) and has a velocity shift of
km s-1, corresponding
most likely to the collision region, i.e. where the winds of the two stars collide (Nussbaumer et al. 1995).
During 1978-1981 the C IV profiles change notably.
The intensity of the WD component decreases relative to the RG component
so that less than 5% of the red C IV feature consists of the broad base
component in December 1981. The shrinking WD component seems to be accompanied by
reduced absorption from the white dwarf wind.
The blue C IV line strengthened continuously relative to the red line and by
January 1981 the intensity ratio reached 1. There were no IUE
observations of AG Peg from 1982 until the end of 1986.
In the 1986 spectra the WD component is barely detectable, and there are no visible absorption lines associated with the RG wind, the collision region or the surrounding nebula. However, based on the modeling in Sect. 6 they still contribute to the observed features. The C IV intensity ratio seems to have continued to increase but no reliable value can be obtained since the lines are saturated in both spectra recorded in 1986. After 1986 there are another two years without IUE observations of AG Peg.
In the spectrum of 1989 the lines of the C IV doublet are
much narrower than in 1986. This implies that the trend of growing emission from the
collision region probably has ended and that
the emission from the RG atmosphere is now dominating.
During the years between 1989 and 1995 the intensity ratio continued to rise,
from 1.5 in 1989 to
1.8 in 1995, probably because of decreasing opacity
in the WD wind. The C IV emission from the WD wind disappeared from the
IUE spectra having the longest exposure time during the early 1990s, but was
observed in spectra recorded with the HST GHRS instrument, which has a higher
sensitivity (Nussbaumer et al. 1995).
During the next three years, through May 1981, there was no significant change in
the N V doublet. The intensity ratio slowly increased to 0.9, and a weak
absorption feature blue-shifted by
km s-1 is seemingly present
in some of the spectra. However, by December 1981 remarkable differences are observed.
The blue wing of the red N V line
becomes totally absorbed while the blue line appears narrower with a FWHM of
0.9 Å. The peak intensity ratio continued to increase and reached 1.0 in 1981.
By 1986 the broad WD component nearly vanished while strong emission
in the RG component dominated the spectrum. As for the C IV doublet, at this time
both lines stood on a socket that most likely originated from the collision region.
Surprisingly, the peak intensity ratio (0.6) has decreased again and is nearly
back to the 1978 value. Except for the WD absorption three other absorption features,
each of them associated with N V, are observed in long exposure spectra during 1986.
They have blue-shifts of -190, -340 and -470 km s-1, and the first two correspond
to similar absorption features seen at an earlier stage in C IV. These two are associated
with the fast RG component and the collision region, respectively.
In 1989 the intensity ratio has increased to 1.2, and the two
lines have become more narrow (FWHM of 0.5 Å). This was also observed for
C IV. Hence, the N V radiation is now dominated by the RG region facing the white dwarf.
Both lines still rest on a socket, which has decreased in strength since 1986.
The only absorption line clearly remaining is the feature corresponding to the
surrounding nebula. During 1989-1995 the intensity ratio continued to rise
until it reached the value of 2 in 1995. In the early 1990s a narrow absorption
feature appeared slightly red-shifted relative to the narrow nebular component of
the red
1242.78 line. It will be shown in Sect. 4 that it is due to
resonant pumping of Fe II. The WD wind is not observed in N V in IUE spectra
after 1989, but it has been observed with the more sensitive
HST/GHRS instrument (Nussbaumer et al. 1995) where a continuing decline of the N V emission
from the white dwarf wind was detected.
Although no C IV or N V emission from the WD wind is observed in IUE spectra after 1989, Altamore & Cassatella (1997)
showed that WD wind emission is still detectable after 1989 in the He II
1640 and N IV]
1487 lines.
Based on early IUE spectra of RR Tel (Penston et al. 1983) several strong lines
were identified by Johansson (1983) as fluorescence lines of Fe II, excited
by C IV in a Bowen mechanism. The possible connection between a part of the
blue C IV line intensity being transferred to Fe II and the anomalous intensity ratio
of the C IV doublet observed in symbiotic systems was investigated by
Michalitsianos et al. (1992). An influence of Fe II pumping seemed
likely since Johansson (1983) had found 10 strong UV lines of Fe II, originating
from one particular Fe II level, y4H11/2 in RR Tel spectra. This level
is pumped by C IV through the excitation channel a4F
H11/2 at
1548.204 Å, coinciding with the blue C IV line at 1548.187 Å. To estimate the
optimal relative influence of the C IV pumping we have in Table 2 corrected the observed
intensity ratio of the C IV doublet by adding the energy loss in the
1548 line
for eight symbiotic systems (Eriksson et al. 2001). The energy loss is obtained by adding
the radiation energy in all of the observed Fe II fluorescence lines. The variation in the
relative influence among the stellar systems may be due to inclination of the orbital plane.
One of the purposes of the present work is to include the Fe II absorption
in the modeling of the C IV and N V doublets in AG Peg, derive the line opacities for
the pumped channels, and compare the derived and observed strength of the Fe II
fluorescence lines. Another Fe II line has been identified in this work as a fluorescence
line pumped by N V, and the Fe II line opacity has therefore been incorporated in the
fitting of the N V doublet.
Table 2: Observed and corrected intensity ratios of the C IV doublet, I(1548.2)/I(1550.8).
Fluorescence processes based on photoexcitation by accidental resonances (PAR) require specific circumstances. Since the lower level in the pumped channel must have a significant population, the selective excitation mostly occurs from levels with low excitation energies. In thermal equilibrium photoexcitation from most metastable levels of Fe II requires temperatures of several thousand Kelvin to be detectable. The nebular temperature of AG Peg is estimated to be higher than 10 000 K (Michalitsianos et al. 1992). Radiative pumping in Fe II from the b2P3/2 level at an energy as high as 3.20 eV has been observed in RR Tel (Hartman & Johansson 2000), which is a symbiotic system with a spectrum similar to AG Peg. The possibility of selective photo excitation from levels up to 4 eV has been considered in this investigation. The pumping efficiency declines exponentially with an increasing wavelength difference between the center of gravity of the pumping line and the fluorescence channel. Therefore, resonant photoexcitation for separations greater than the FWHM of the pumping line is not likely to occur.
The intensity of a fluorescence line,
,
in spectrum "Y" (in this case Y = Fe II)
pumped by an emission line from an ion "X" (in this work X = C IV or N V) is given by
![]() |
(1) |
![]() |
Figure 3:
Scheme showing photoexcitation by an accidental resonance, i.e.
![]() ![]() ![]() ![]() |
Open with DEXTER |
Table 3: Fe II fluorescence lines observed in AG Peg.
The N V resonance doublet is also responsible for photoexcitation of Fe II. The emission
line at 2605.82 Å (see Table 3) is a transition from v2G7/2 having
an excitation energy of 10.33 eV, which is too high to be collisionally
populated. However, the channel a4F
G7/2 at 1242.74 Å
coincides with the RG component of the N V
1242.80 line resulting in selective
population of v2G7/2 in Fe II.
The
2605.82 line is the only line observed from v2G7/2, since its
branching fraction is more than three times higher than for any other transition from
the same upper level (Fuhr et al. 1988). Since
2605 is only slightly above the noise
level, other transitions from v2G7/2 are too weak to be detected.
Of the seven strongest fluorescence lines in Table 3 six fall in the wavelength
region 2435-2595 Å. These lines, in particular 2493.1, are actually among
the most prominent lines in the entire IUE spectrum of AG Peg recorded in
the long wavelength region (2000-3300 Å). Four of these lines are displayed in Fig. 4.
![]() |
Figure 4:
C IV pumped Fe II fluorescence lines ![]() ![]() |
Open with DEXTER |
![]() |
Figure 5:
Temporal behaviour of C IV ![]() ![]() |
Open with DEXTER |
![]() |
Figure 6:
Correlation between Fe II fluorescence lines and C IV ![]() |
Open with DEXTER |
As discussed in the previous section the C IV and N V doublets, which generate many Fe II fluorescence lines, have variable intensity and structure in the spectra of AG Peg during the years of IUE data collection. Variability is also observed in the fluorescence lines given in Table 3. Two of the C IV pumped channels coincide with the RG component of the blue C IV line (1548.187 Å), whereas the third one, at 1548.697 Å, is outside the width of this component. The time history of the corresponding fluorescence lines should therefore correlate differently with the time history of the composite structure of the C IV line. In Fig. 5 we show the time history of the Fe II fluorescence produced by pumping by the blue C IV line from the RG and WD components.
In the earliest IUE spectra of AG Peg, recorded before 1980, the
blue C IV line is almost absent because of overlapping absorption from the P Cygni
profile of the red C IV line. Nevertheless, the fluorescence lines pumped
by the blue line are present in the same IUE spectra. This could imply that
the pumping of iron occurs in a region located closer to the symbiotic system than
the region responsible for the P Cyg absorption part of the WD component. However,
the detailed modeling in Sect. 5 shows that the fluorescence takes place in the outermost
part of the system. In any case, the red line seems to best represent the flux in C IV.
Therefore, we have plotted in Fig. 6 the correlation between the peak intensity of the
red line (and not the true pumping line, the blue line) with the peak intensities of
two Fe II fluorescence lines. We used one Fe II line from each of the
levels 4p y4H11/2 (2493.10) and 4p w2D3/2 (
2479.98),
and the C IV and Fe II intensities were measured in the LWP and SWP spectra recorded
close in time to each other. Figure 6 shows that there is a good intensity correlation
between the fluorescence lines and the red C IV line. This indicates that the first two
groups of Fe II lines listed in Table 3 are generated by C IV. It may also indicate that
the problem with the varying C IV intensity ratio is due to the blue line and a
combination of absorption due to the red line P Cyg profile and to fluorescent pumping. This
will further be discussed in Sect. 5.
We have applied a linear least squares fitting to the data in Fig. 6 and found the following correlations
between the peak intensity of the Fe II fluorescence lines and the peak intensity of C IV:
![]() |
(2) |
![]() |
(3) |
![]() |
= | ![]() |
|
![]() |
(4) |
The third group of C IV pumped Fe II fluorescence lines in Table 3 is due to the pumping
channel a4F
D5/2 at 1548.70 Å, which is outside the reach
of the RG component in the blue C IV line. The fluorescence lines are clearly present in
IUE spectra of AG Peg during 1978-1981. When, after five years without observations (Fig. 4),
AG Peg was observed again during 1986-1995 there were no traces of these lines. This is
in agreement with the disappearance of the C IV lines after 1986, as discussed in Sect. 3.2.
The 2605.82 line in Table 3 is the only observed Fe II line associated with
the pumping channel a4F
G7/2 at 1242.74 Å, which is
activated by the red N V line. This line is absent in the IUE spectra until 1993, when
it became clearly observable, and remained so during the last two years of the IUE epoch.
In the modeling we have treated the spectral regions of the C IV and N V doublets
in AG Peg separately. In each of the two regions we have only included the two
resonance lines and the Fe II lines pumped by them. The influence of potential minor
contributors is unknown.
The equations for the theoretical line profiles
(X = C(arbon) or N(itrogen))
used to fit the observed C IV and N V resonance lines are constructed as follows
(the indication that all functions involved are
-dependent is excluded below):
![]() |
(5) |
![]() |
(6) |
The main differences between this model and previous analyses (Vogel & Nussbaumer 1994; Nussbaumer et al. 1995) concern the absorption in the WD wind. We obtained the best fits assuming that the absorption of C IV and N V occurs at some distance from the white dwarf where the temperatures are sufficient for the respective ion, which leads to constant expansion velocity for each ion. We have also for the first time included pumping of Fe II in a fitting procedure of the resonance doublets.
Equation (5) is based on some assumptions about the symbiotic system AG Peg.
Firstly, due to the slow nova eruption beginning in 1850 the white dwarf has a wind
at a terminal velocity of 1000 km s-1 according to Kenyon et al. (1993).
The WD wind velocity is now treated as a free parameter (with certain limits) in the
broad C IV and N V components. The WD wind is probably very extended and encloses
most of the stellar system. The red giant looses also material in a dense, slow
wind, for which we assume an expansion velocity typical of red giants (30 to 100 km s-1). The radiative temperature varies with distance from the white dwarf and
determines the ionization balance in the various regions. For example, matter in
the RG extended atmosphere and wind becomes ionized by the WD UV emission. As the white
dwarf evolves along the post-AGB phase its wind becomes more transparent for radiation,
which leads to an increase in the radiative temperature. The ionization increases in
the WD wind as well as in the RG region, which also starts to emit C IV and N V
radiation.
Between the two stars there is a region where the dense RG wind collides with the fast WD wind heating the material mechanically to several million degrees Kelvin (Murset et al. 1995). We assume that the matter in the WC region has an expansion velocity close to half of the WD wind velocity since the particles in the WD wind loose momentum when colliding with the slower particles in the RG wind. We also assume that further out in a nebula surrounding the symbiotic system Fe+ ions are pumped by emission lines originating from highly-ionized elements located in the WD wind, closer to the white dwarf.
These qualitative assumptions are expressed by quantitative expressions (see Appendix A) and included in Eqs. (5) and (6). The parameters have been changed iteratively to get an agreement between the theoretical and observed spectrum around the C IV and N V lines. Most of the parameters make independent effects on the spectrum. As starting values for some parameters, e.g. velocities, we have used previously published data, and for others, e.g. line width, we have extracted the values from similar lines. Assumptions the parameters presented in Appendix A were inserted into the equations, which were fitted to the observed line profiles. In Fig. 7 we show the result of our fit applying Eq. (5) to the C IV and N V resonance regions in AG Peg. In the following subsections we discuss both the resulting parameter values obtained from the fitting procedure and the development of the parameters studied in the various regions.
![]() |
Figure 7: The observed spectrum of AG Peg (solid) is compared to the fitted theoretical spectrum (dotted) for the resonance region of C IV (Fig. 7a) and N V (Fig. 7b). The observed spectra were recorded on 9 October 1979 (C IV) and 18 August 1978 (N V). |
Open with DEXTER |
For the years 1978-1981, the average WD wind velocity obtained from the fitting
procedure is 650
20 km s-1 for C IV and
km s-1 for N V.
According to the diagram in Fig. 8 it is then nearly constant
for the whole IUE period 1978-1995, in agreement with the results of
Altamore & Cassatella (1997). This means that the velocity is larger than
the fine-structure splitting in C IV but not in N V.
Both the emission and the blue-shifted absorption of the C IV and N V lines
in the WD wind weaken during the period of IUE observations as shown in Figs. 9 and 10. During Aug. 1978-Sep. 1979 the emitted intensity of the red C IV line
in the WD wind is
(erg cm-2 Å-1 s-1, hereafter we use this intensity unit and denote it as i.u.),
and the optical depth at the central wavelength
of the blue-shifted C IV absorption is 1.66
0.24.
During the following two years (to Dec. 1981) the intensity of the wind component drops
by nearly a factor of three to
i.u., and the optical
depth by almost a factor of five to 0.34
0.08. After 1981, both the emission and
the optical depth in the WD wind continue to decline. For the years 1994-1995 the
intensity drops considerably and only upper limits can be derived.
The optical depth and intensity of the N V lines obtained from the IUE observations
Aug. 1978-Dec. 1981 are at levels of
= 3.22
0.41 and
i.u., respectively. During the ensuing 14 years,
until the last IUE observation, the broad wind emission continually declines by about
the same factor as C IV to
i.u., and the optical depth
drops to 0.25
0.04.
Two possibilities for the rapid decline of the broad wind component can be addressed: a
decline in the density of the WD wind or an increase in the temperature of the
white dwarf as it evolves to the left in the H-R diagram, ionizing C IV to C V and N V
to N VI. Altamore & Cassatella (1997) analyzed the total flux in the He II
Balmer
line relative to the continuum level at 1335 Å in AG Peg. Using
the Zanstra method they found that the WD temperature was roughly constant for the period
1978-1995. Interestingly, the flux and opacity of the C IV lines decreased
a few years earlier than the intensity and opacity of the N V lines (Figs. 9
and 10), which is expected if the temperature had increased during the 1980s.
The conditions for double scattering (Yoo et al. 2002) are fulfilled for C IV (the WD wind velocity larger than the fine structure separation), but not for N V. However, to get an effect on the blue line from the blue-shifted red line there is a need for an accelerating wind having two specific regions, where the velocity difference between the C IV ions matches the fine structure separation. This contradicts the nearly constant C IV velocity in the WD wind reported above and by Altamore & Cassatella (1997), and we find no arguments for including double scattering in our model.
![]() |
Figure 8: Temporal behaviour of the white dwarf wind velocities of C IV and N V. |
Open with DEXTER |
![]() |
Figure 9:
C IV and N V peak intensities in the white dwarf wind. The last three circles (1994-1995) are
to be treated as upper limits. Since the FWHM of the wind profiles was almost
constant through the period (![]() ![]() |
Open with DEXTER |
![]() |
Figure 10: C IV and N V line opacities in the white-dwarf wind in AG Peg. |
Open with DEXTER |
![]() |
Figure 11: Intensities in the wind-collision region in AG Peg. |
Open with DEXTER |
The strength of the C IV emission originating from the WC region drops by more
than a factor of ten between December 1986 and September 1989 (Fig. 11).
In the early observations the line intensity of the WC component of the red line varied in the interval
i.u., but later it decreased to
i.u. From August 1978 to December 1979 the optical depth
for the blue-shifted absorption of the C IV doublet was 2.3
0.2, but the lines
are steadily vanishing and by 1989 there is no trace of absorption in the WC
region (Fig. 12). The velocity shift of the blue-shifted absorption was
342
24 km s-1 in late 1978, but it declined slowly and in December 1986 it was
280
24 km s-1. The velocity in the WC region is thus about half
the WD velocity, which is expected according to the assumptions made in the introduction
of Sect. 5. The lack of absorption in the spectra after 1986 makes it impossible to
derive any velocity structure of the WC region from the fitting procedure.
The disappearance of the blue-shifted absorption, while there is still emission in C IV,
suggests that the decline of the WD wind emission is not only caused by
an increase of its radiative temperature but also a decreased density.
The temperature in the WC region is most likely due to mechanical heating and independent
of the radiative temperature close to the white dwarf.
Until April 1980 the strength of the intensity of the N V emission from the WC region
was
i.u., but then it increased and
during 1980-1995 it has a mean value of
i.u.
During the period 1978-1986 the optical depth in N V varied between 0.17 and 1.51
but the lines are absent in spectra recorded later than 1986.
The velocity shift of the blue-shifted N V absorption in the WC region is
363
33 km s-1 during 1978-1986.
![]() |
Figure 12: Opacities in the wind-collision region in AG Peg. |
Open with DEXTER |
![]() |
Figure 13: Emission intensities from ionized part of red-giant wind in AG Peg. |
Open with DEXTER |
The modeling of the C IV doublet reveals a double velocity structure of the red giant
extended atmosphere, due to a fast wind at 144
6 km s-1 and a slow wind at
59
4 km s-1. The slow wind is close to the expansion velocity
of the inner nebular shell at 60
15 km s-1 (Kenny et al. 1991).
Both velocities stay constant through the entire period
of IUE observations. During 1978 to 1981 and 1986 the optical depth in the fast wind
is relatively high,
,
whereas it varies for the
slow wind between 0.16 and 0.98 (Fig. 14).
During 1989-1995 it appears stable around 0.75
0.13 in the slow wind, but the
opacity of the fast wind drops to 0.05 in 1989 and then is increasing to 0.67 during the last years of IUE.
The intensity of the red C IV line is constant at
i.u. during the period (1978-1995).
There is no sign of a slow wind in the N V lines, whereas the fast wind is
observable and has a velocity of 195
19 km s-1. It was not possible to derive
an optical depth for N V in the first six SWP-spectra of AG Peg (Aug. 1978-Sep. 1979),
but it increases steeply until December 1981 when it reached a value of
.
It was also large in 1986 but after October 1989 it varied between 0.10 and 1.51.
There is no N V resonance doublet emission from the RG atmosphere during 1978-1981.
In December 1986 the narrow emission lines are observable and stay
at a strength of
i.u. to the last IUE
observations. This behaviour could be explained by the same phenomenon as the decline
of the emission from the WD wind. When the radiation temperature in the WD wind
becomes high enough to ionize N V more high energy photons will reach the extended
RG atmosphere. This will lead to an increase in the temperature in the RG atmosphere and N IV will be ionized
to N V.
![]() |
Figure 14: Line opacities in ionized part of red-giant wind in AG Peg. |
Open with DEXTER |
![]() |
Figure 15: Comparison between observed spectra of AG Peg (solid) and fits (dotted) of the C IV and N V doublets where the Fe II pumping channels (vertical lines) are not included a) or included b). |
Open with DEXTER |
Fluorescence by the PAR mechanism turned out to be an important process to include when
modeling the C IV doublet (Fig. 15). Since some Fe II fluorescence lines are excited
by the narrow components of the C IV and N V lines the velocity (wavelength) shift
between these and the pumped Fe II transitions is a good indicator of the velocity
of the Fe II region.
The best fit of the line profiles gives a velocity shift of
km s-1 for
N V and
km s-1 for C IV.
The line depth corresponding to the Fe II absorption is very different from one spectrum
to another.
This variation can be explained if the surrounding nebula is considered not to be
homogeneous but split up into rather segmented regions of different density.
However, the mean value of the pumping power for the a4F
H11/2 and
a4P
D3/2 channels are
and
erg cm-2 s-1, respectively. It is obtained as the deficit of the integrated intensity of the
C IV doublet when the Fe II channel is incorporated
To calculate the peak intensity,
of the fluorescence lines as a consequence of the pumping
obtained from the observations we apply the formula:
![]() |
(7) |
The C IV and N V resonance doublets have very complex line profiles, which contain useful information about all four regions simultaneously. Three of the regions (the WD wind, ionized part of the RG atmosphere and the WC region) give contibutions to the emission lines as well as to the absorption, whereas Fe II in the fourth region (the common envelope) is pumped by these lines and therefore affects their profiles. By modeling the N V and C IV resonance doublets we obtained values of the optical depths, expansion velocites, intensities and information about the development of these parameters during the time of IUE observations.
Both intensity and opacities have decreased in the white dwarf wind, which we believe is due to a temperature increase since the intensity of the C IV doublet started to decline at least two years before the N V doublet. Emission of the N V doublet in the ionized part of the red giant was not observed until 1986 when the opacity in the white dwarf wind had started to decrease. This is consistent with an increase of the temperature in the white dwarf wind that would lead to more UV photons reaching the atmosphere of the red giant. The modeling of C IV showed two different expansion velocities for the red giant atmosphere (144 and 59 km s-1) while only the higher expansion velocity was obtained when modeling N V.
Acknowledgements
All of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. We are grateful to the referee, A. Cassatella, for detailed examination of the manuscript and for valuable criticism and suggestions for its improvements.
OitX = Fraction of light from region i that passes through region t