Table 5: The amplitude of ${\omega (\theta )}$ at 1 degree, ${A_\omega }$, the slope $\delta $ and the comoving correlation length r0 (in h-1 Mpc), for each field and for different magnitude limited samples considered in this paper. r0 measurements are computed for three standard cosmological models. To derive r0 we assume a top-hat redshift distribution centred at $\overline z = 3.2$ and the best fitted value of the slope. Result marked as CFDF mean are computed from the mean over all three fields. The error bars shown correspond to Poisson error bars. An extra systematic errorbar arising from our uncertainty in the underlying redshift range of our Lyman-break sources of $\pm 0.2$ for the entire faint samples and of $\pm 0.4$ for the bright sample should be added. (Our principal results are highlighted in bold.)
Field magnitude limit ${A_\omega }$(1 deg) $\delta $ r0 (h-1 Mpc) r0 (h-1 Mpc) r0 (h-1 Mpc)
  (IAB) $\times10^{-3}$   $\Omega_{0}=1.0$, $\Omega_{0}=0.2$, $\Omega_0=0.3$,
        $\Omega_{\Lambda}=0.0$ $\Omega_{\Lambda}=0.0$ $\Omega_{\Lambda}=0.7$
CFDF-14 20.0-24.5 $\rm 5.9^{+13.2}_{-4.0}$ $\rm {\bf0.81}^{+0.21}_{-0.24}$ $\rm 3.2^{+4.0}_{-1.2}$ $\rm 3.6^{+4.4}_{-1.3}$ $\rm 5.3^{+6.6}_{-2.0}$
  20.0-23.5 $\rm 7.8^{+166.0}_{-7.7}$ $\rm 1.08^{+0.84}_{-0.66}$ $\rm 5.8^{+59.8}_{-2.8}$ $\rm 6.8^{+69.3}_{-3.2}$ $\rm 9.5^{+97.7}_{-4.5}$
  23.5-24.5 $\rm 2.3^{+6.4}_{-1.7}$ $\rm0.96^{+0.25}_{-0.26}$ $\rm 2.6^{+3.2}_{-1.0}$ $\rm 3.0^{+4.2}_{-1.1}$ 4.3+6.1-1.6
CFDF-22 20.0-24.5 $\rm 8.1^{+40.9}_{-6.0}$ $\rm {\bf0.81}^{+0.25}_{-0.35}$ $\rm 3.8^{+10.7}_{-1.6}$ $\rm 4.2^{+11.8}_{-1.7}$ $\rm 6.3^{+17.7}_{-2.6}$
CFDF-03 20.0-24.5 8.6$~\pm~$0.6 0.8 3.9$~\pm~$0.2 4.3$~\pm~$0.2 6.4$~\pm~$0.3
CFDF mean 20.0-24.5 7.4$~\pm~$1.0 0.8 3.6$~\pm~$0.3 3.9$~\pm~$0.3 5.9$~\pm~$0.5
CFDF-14 20.0-23.5 24.9$~\pm~$7.9 0.8 7.0$~\pm~$1.2 7.7$~\pm~$1.4 11.6$~\pm~$2.0
  23.5-24.5 5.4$~\pm~$1.1 0.8 3.0$~\pm~$0.3 3.3$~\pm~$0.4 5.0$~\pm~$0.6


Source LaTeX | All tables | In the text