Table 4: Model quantities averaged at the outer boundary for constant-opacity models (cf. Sect. 4.1). The models are named by adding a suffix to the respective model name in Table 2. The suffix is a combination of two model parameters, the piston velocity amplitude $\Delta {u}_{\rm p}$ (Un, n in  \ensuremath{\,\mbox{km}\,\mbox{s}^{-1}}) and the carbon/oxygen ratio \ensuremath {\varepsilon _{{\rm C}}/\varepsilon _{{\rm O}}} (Cnn, nn is $10\cdot {\ensuremath {\varepsilon _{{\rm C}}/\varepsilon _{{\rm O}}} }$). The last but two column, $T_{{\rm tot}}$, gives the total time-interval of each model calculation. The numbers associated with models run for a shorter time-interval are less reliable than the others as the means are taken over short time intervals. The last but one column gives the type of wind: i, irregular wind; l p, periodic wind; l q, quasi-periodic wind; t, transition model; --, no wind. l ( $\in{\mathbb{N}}$) shows the (multi-)periodicity of dust shell formation in the unit of the piston period P. A tilde (e.g. "2q'') in the last but one column indicates a correspondence with the characterization only during a part of the calculated time-interval. The values shown in bold face for the PC models indicate that the value differs from the corresponding value given by HD97 (by $\ge $$10\%$). The symbols in the last column show whether the respective drift models show an increased/decreased ( \ensuremath {\vartriangle }/ \ensuremath {\triangledown }) mass loss rate, or new wind ( $\circledast $) when compared to the corresponding PC model. For the PC models an "H'' indicates that the same model parameters were used in a model in HD97. The symbol printed in subscript in the last column indicates how the respective (differing) model is illustrated in Figs. 2, 3, 6 and 7.
Model \ensuremath{\langle\dot{M}\rangle}   \ensuremath{\langle u_{\infty}\rangle}  \ensuremath{\langle f_{{\rm cond}}\rangle}  \ensuremath{\langle\ensuremath{\rho_{{\rm d}}/\rho}\rangle}  \ensuremath{\langle\tau_{{\rm d}}\rangle} \ensuremath{\langle v_{{\rm D}}\rangle} $T_{{\rm tot}}$ Type  
\ensuremath{[10^{-6}\,{M}_{\odot}/\mbox{yr}]}   $[\ensuremath{\,\mbox{km}\,\mbox{s}^{-1}} ]$  $[\%]$  [10-4]  [10-2] $[\ensuremath{\,\mbox{km}\,\mbox{s}^{-1}} ]$ [P]    
   ( \ensuremath{\sigma_{{\rm s}}})    ( \ensuremath{\sigma_{{\rm s}}})    ( \ensuremath{\sigma_{{\rm s}}})    ( \ensuremath{\sigma_{{\rm s}}})    ( \ensuremath{\sigma_{{\rm s}}})        
POSITION COUPLED MODELS (illustrated with the symbol "$\circ $'')          
R07FU2C18 0.53(0.27)   5.3(0.88)   36(0.16)   16(0.87)   38(2.6)   240 i H$_{\oplus}$
R07FU2C20 1.8(1.9)   ${\bf 23}$(1.7)   ${\bf 65}$(6.6)   ${\bf 36}$(3.7)   54(13)   180 2q H
R07FU2C25 3.3(2.5)   33(2.5)   69(11)   59(9.5)   110(25)   150 1q H
R07FU4C25 8.2(11)   36(2.4)   74(14)   61(12)   230(50)   170 i H
R10FU2C15 ${\bf 2.4}$(0.53)   4.9(0.32)   42(1.2)   12(0.30)   110(6.6)   360 i H $_{\circledcirc}$
R10FU2C16 ${\bf 11}$(9.0)   19(1.7)   75(7.1)   26(2.5)   150(50)   290 i H
R10FU2C18 15(12)   25(1.6)   74(11)   33(4.9)   210(59)   250 2p H
R10FU2C20 ${\bf 14}$(12)   29(1.9)   ${\bf 73}$(12)   ${\bf 41}$(7.7)   240(49)   240 2q H
R13FU2C13 --                         --  
R13FU2C14 ${\bf 7.4}$(4.4)   7.9(1.4)   48(6.0)   ${\bf 11}$(1.8)   150(14)   450 i H $_{\circledcirc}$
R13FU4C14 ${\bf 55}$(36)   14(1.4)   ${\bf 66}$(11)   15(2.3)   350(85)   400 i  
R13FU2C16 29(19)   21(1.6)   71(9.1)   24(3.1)   270(74)   370 i H
DRIFT MODELS (illustrated with the symbol "$\bullet$'')          
R07FU2C18 --                         t  
R07FU2C20 1.4(1.5)   21(2.4)   17(30)   27(150)   63(30) 13 115 i \ensuremath {\triangledown }
R07FU2C25 1.9(2.5)   34(2.9)   31(29)   57(280)   98(33) 11 87 i \ensuremath {\triangledown }
R07FU4C25 5.4(8.5)   33(3.0)   35(40)   34(99)   240(49) 4.2 137 i \ensuremath {\triangledown }
R10FU2C15 4.4(5.5)   13(2.7)   40(34)   16(54)   57(36) 9.7 120 i \ensuremath {\vartriangle } $_{\ensuremath{\star} }$
R10FU2C16 8.7(8.6)   16(2.1)   59(34)   34(85)   120(46) 5.6 250 i \ensuremath {\triangledown }
R10FU2C18 9.5(11)   22(2.2)   47(37)   22(52)   150(54) 4.0 65 i \ensuremath {\triangledown }
R10FU2C20 8.8(13)   28(2.8)   47(40)   29(56)   160(42) 3.8 60 i \ensuremath {\triangledown }
R13FU2C13 15(9.7)   10(0.88)   47(30)   7.8(12)   98(33) 2.8 160 3p $\circledast_{\ensuremath{\star} }$
R13FU2C14 18(15)   13(1.1)   66(26)   12(15)   160(45) 2.5 440 i \ensuremath {\vartriangle } $_{\ensuremath{\star} }$
R13FU4C14 56(44)   13(1.5)   54(31)   12(10)   350(100) 2.3 170 i  
R13FU2C16 23(25)   20(1.8)   41(39)   15(24)   220(63) 3.8 110 i \ensuremath {\triangledown }


Source LaTeX | All tables | In the text