next previous
Up: Automatic observation rendering (AMORE)


Online Material


 

 
Table A.1: AMORE with the test population as specified in Sect. 4.3.1. See 2.6.2, 2.6.3, 2.6.4, 2.6.5 and 4.2 for additional details. pcross is the crossover probability, rcross is the multi-point crossover rate, rbrood determines the amount of offspring two parents can have, pcreep is the creep mutation rate and pcorr the correlated mutation rate. The generation number indicates at which generation the resulting fitness value $f_{\rm A}$obtained with AMORE first emerged.

model
pcross rcross rbrood pcreep pcorr $f_{\rm A}$ generation

1
0.85 1.00 1.00 0.0 0.0 0.17266 361
2 0.85 1.00 1.00 0.3 0.0 0.17266 361
3 0.85 1.00 1.00 0.7 0.0 0.17266 361
4 0.85 1.00 1.00 0.0 0.3 0.27551 221
5 0.85 1.00 1.00 0.0 0.7 0.26830 221
6 0.85 1.00 1.00 0.3 0.3 0.30488 381
7 0.85 1.00 1.00 0.7 0.3 0.32005 341
8 0.85 1.00 1.00 0.3 0.7 0.32167 201
9 0.85 1.00 1.00 0.7 0.7 0.38310 341
10 0.50 1.00 1.00 0.0 0.0 0.35662 381
11 0.50 1.00 1.00 0.3 0.0 0.35662 381
12 0.50 1.00 1.00 0.7 0.0 0.35662 381
13 0.50 1.00 1.00 0.0 0.3 0.34961 281
14 0.50 1.00 1.00 0.0 0.7 0.17008 261
15 0.50 1.00 1.00 0.3 0.3 0.36025 381
16 0.50 1.00 1.00 0.7 0.3 0.24048 261
17 0.50 1.00 1.00 0.3 0.7 0.23956 321
18 0.50 1.00 1.00 0.7 0.7 0.29463 321
19 0.85 2.00 1.00 0.0 0.0 0.31700 384
20 0.85 2.00 1.00 0.3 0.0 0.31700 384
21 0.85 2.00 1.00 0.7 0.0 0.31700 384
22 0.85 2.00 1.00 0.0 0.3 0.25740 341
23 0.85 2.00 1.00 0.0 0.7 0.35805 341
24 0.85 2.00 1.00 0.3 0.3 0.34120 181
25 0.85 2.00 1.00 0.7 0.3 0.31290 141
26 0.85 2.00 1.00 0.3 0.7 0.30913 341
27 0.85 2.00 1.00 0.7 0.7 0.32212 261
28 0.50 2.00 1.00 0.0 0.0 0.16122 261
29 0.50 2.00 1.00 0.3 0.0 0.16122 261
30 0.50 2.00 1.00 0.7 0.0 0.16122 261
31 0.50 2.00 1.00 0.0 0.3 0.36796 381
32 0.50 2.00 1.00 0.0 0.7 0.28494 381
33 0.50 2.00 1.00 0.3 0.3 0.27263 381
34 0.50 2.00 1.00 0.7 0.3 0.16352 301
35 0.50 2.00 1.00 0.3 0.7 0.35149 301
36 0.50 2.00 1.00 0.7 0.7 0.34031 381
37 0.85 3.00 1.00 0.0 0.0 0.38297 301
38 0.85 3.00 1.00 0.3 0.0 0.38297 301
39 0.85 3.00 1.00 0.7 0.0 0.38297 301
40 0.85 3.00 1.00 0.0 0.3 0.41019 341
41 0.85 3.00 1.00 0.0 0.7 0.32012 381
42 0.85 3.00 1.00 0.3 0.3 0.36840 341
43 0.85 3.00 1.00 0.7 0.3 0.31281 361
44 0.85 3.00 1.00 0.7 0.3 0.31281 361
45 0.85 3.00 1.00 0.3 0.7 0.30571 381
46 0.50 3.00 1.00 0.0 0.0 0.15614 301
47 0.50 3.00 1.00 0.3 0.0 0.15614 301
48 0.50 3.00 1.00 0.7 0.0 0.15614 301
49 0.50 3.00 1.00 0.0 0.3 0.23392 301
50 0.50 3.00 1.00 0.0 0.7 0.16274 221
51 0.50 3.00 1.00 0.3 0.3 0.25123 281
52 0.50 3.00 1.00 0.7 0.3 0.27151 261
53 0.50 3.00 1.00 0.3 0.7 0.35597 301



 
Table A.1: continued.

model
pcross rcross rbrood pcreep pcorr $f_{\rm A}$ generation

54
0.50 3.00 1.00 0.7 0.7 0.27743 361
55 0.85 1.00 2.00 0.0 0.0 0.36221 161
56 0.85 1.00 2.00 0.3 0.0 0.36221 161
57 0.85 1.00 2.00 0.7 0.0 0.36221 161
58 0.85 1.00 2.00 0.0 0.3 0.16284 261
59 0.85 1.00 2.00 0.0 0.7 0.30251 381
60 0.85 1.00 2.00 0.3 0.3 0.32133 361
61 0.85 1.00 2.00 0.7 0.3 0.33565 361
62 0.85 1.00 2.00 0.3 0.7 0.27452 341
63 0.85 1.00 2.00 0.7 0.7 0.34660 301
64 0.50 1.00 2.00 0.0 0.0 0.27683 381
65 0.50 1.00 2.00 0.3 0.0 0.27683 381
66 0.50 1.00 2.00 0.7 0.0 0.27683 381
67 0.50 1.00 2.00 0.0 0.3 0.16833 201
68 0.50 1.00 2.00 0.0 0.7 0.38586 321
69 0.50 1.00 2.00 0.3 0.3 0.34390 361
70 0.50 1.00 2.00 0.7 0.3 0.33531 241
71 0.50 1.00 2.00 0.3 0.7 0.32646 221
72 0.50 1.00 2.00 0.7 0.7 0.34591 381
73 0.85 1.00 4.00 0.0 0.0 0.34607 221
74 0.85 1.00 4.00 0.3 0.0 0.34607 221
75 0.85 1.00 4.00 0.7 0.0 0.34607 221
76 0.85 1.00 4.00 0.0 0.3 0.32143 361
77 0.85 1.00 4.00 0.0 0.7 0.27159 381
78 0.85 1.00 4.00 0.3 0.3 0.26001 221
79 0.85 1.00 4.00 0.7 0.3 0.19802 241
80 0.85 1.00 4.00 0.3 0.7 0.33032 381
81 0.85 1.00 4.00 0.7 0.7 0.17799 341
82 0.50 1.00 4.00 0.0 0.0 0.27728 201
83 0.50 1.00 4.00 0.3 0.0 0.27728 201
84 0.50 1.00 4.00 0.7 0.0 0.27728 201
85 0.50 1.00 4.00 0.0 0.3 0.35783 381
86 0.50 1.00 4.00 0.0 0.7 0.28070 341
87 0.50 1.00 4.00 0.3 0.3 0.33717 381
88 0.50 1.00 4.00 0.7 0.3 0.18275 341
89 0.50 1.00 4.00 0.3 0.7 0.24795 361
90 0.50 1.00 4.00 0.7 0.7 0.28384 341
91 0.85 2.00 2.00 0.0 0.0 0.29274 261
92 0.85 2.00 2.00 0.3 0.0 0.29274 261
93 0.85 2.00 2.00 0.7 0.0 0.29274 261
94 0.85 2.00 2.00 0.0 0.3 0.24259 381
95 0.85 2.00 2.00 0.0 0.7 0.26513 161
96 0.85 2.00 2.00 0.3 0.3 0.33411 361
97 0.85 2.00 2.00 0.7 0.3 0.25808 121
98 0.85 2.00 2.00 0.3 0.7 0.35686 341
99 0.85 2.00 2.00 0.7 0.7 0.37254 399
100 0.50 2.00 2.00 0.0 0.0 0.28259 361
101 0.50 2.00 2.00 0.3 0.0 0.28259 361
102 0.50 2.00 2.00 0.7 0.0 0.28259 361
103 0.50 2.00 2.00 0.0 0.3 0.34559 341
104 0.50 2.00 2.00 0.0 0.7 0.39464 320
105 0.50 2.00 2.00 0.3 0.3 0.27112 181
106 0.50 2.00 2.00 0.7 0.3 0.29866 321
107 0.50 2.00 2.00 0.3 0.7 0.23660 181
108 0.50 2.00 2.00 0.7 0.7 0.35769 261
109 0.85 2.00 4.00 0.0 0.0 0.32628 181
110 0.85 2.00 4.00 0.3 0.0 0.32628 181
111 0.85 2.00 4.00 0.7 0.0 0.32628 181



 
Table A.1: continued.

model
pcross rcross rbrood pcreep pcorr $f_{\rm A}$ generation

111
0.85 2.00 4.00 0.7 0.0 0.32628 181
112 0.85 2.00 4.00 0.0 0.3 0.26910 361
113 0.85 2.00 4.00 0.0 0.7 0.37278 389
114 0.85 2.00 4.00 0.3 0.3 0.31434 241
115 0.85 2.00 4.00 0.7 0.3 0.18222 321
116 0.85 2.00 4.00 0.3 0.7 0.26176 341
117 0.85 2.00 4.00 0.7 0.7 0.19495 241
118 0.50 2.00 4.00 0.0 0.0 0.17656 361
119 0.50 2.00 4.00 0.3 0.0 0.17656 361
120 0.50 2.00 4.00 0.7 0.0 0.17656 361
121 0.50 2.00 4.00 0.0 0.3 0.17248 181
122 0.50 2.00 4.00 0.0 0.7 0.27790 381
123 0.50 2.00 4.00 0.3 0.3 0.17117 221
124 0.50 2.00 4.00 0.7 0.3 0.36171 381
125 0.50 2.00 4.00 0.3 0.7 0.38431 392
126 0.50 2.00 4.00 0.7 0.7 0.31711 400
127 0.85 3.00 2.00 0.0 0.0 0.16288 161
128 0.85 3.00 2.00 0.3 0.0 0.16288 161
129 0.85 3.00 2.00 0.7 0.0 0.16288 161
130 0.85 3.00 2.00 0.0 0.3 0.34149 341
131 0.85 3.00 2.00 0.0 0.7 0.33630 281
132 0.85 3.00 2.00 0.3 0.3 0.24355 301
133 0.85 3.00 2.00 0.7 0.3 0.33731 221
134 0.85 3.00 2.00 0.3 0.7 0.26283 201
135 0.85 3.00 2.00 0.7 0.7 0.25975 121
136 0.50 3.00 2.00 0.0 0.0 0.26047 221
137 0.50 3.00 2.00 0.3 0.0 0.26047 221
138 0.50 3.00 2.00 0.7 0.0 0.26047 221
139 0.50 3.00 2.00 0.0 0.3 0.26449 321
140 0.50 3.00 2.00 0.0 0.7 0.27116 281
141 0.50 3.00 2.00 0.3 0.3 0.31298 101
142 0.50 3.00 2.00 0.7 0.3 0.32952 201
143 0.50 3.00 2.00 0.3 0.7 0.25496 281
144 0.50 3.00 2.00 0.7 0.7 0.24888 221
145 0.85 3.00 4.00 0.0 0.0 0.34932 321
146 0.85 3.00 4.00 0.3 0.0 0.34932 321
147 0.85 3.00 4.00 0.7 0.0 0.34932 321
148 0.85 3.00 4.00 0.0 0.3 0.34687 381
149 0.85 3.00 4.00 0.0 0.7 0.32433 321
150 0.85 3.00 4.00 0.3 0.3 0.17152 141
151 0.85 3.00 4.00 0.7 0.3 0.30958 395
152 0.85 3.00 4.00 0.3 0.7 0.31341 398
153 0.85 3.00 4.00 0.7 0.7 0.27072 261
154 0.50 3.00 4.00 0.0 0.0 0.34272 101
155 0.50 3.00 4.00 0.3 0.0 0.34272 101
156 0.50 3.00 4.00 0.7 0.0 0.34272 101
157 0.50 3.00 4.00 0.0 0.3 0.30844 321
158 0.50 3.00 4.00 0.0 0.7 0.27009 361
159 0.50 3.00 4.00 0.3 0.3 0.17333 381
160 0.50 3.00 4.00 0.7 0.3 0.25621 361
161 0.50 3.00 4.00 0.3 0.7 0.39429 341
162 0.50 3.00 4.00 0.7 0.7 0.26150 361



 

 
Table A.2: Results of running AMORE with one of the astrophysical parameters fixed at its original value. These tests provide an indication about the influence of one parameter on the retrieval of the remaining parameters, see Sects. 4.3.3 and 5.3 for additional details.

parameter
model $f_{\rm A}$ log d (pc) $A_{\rm V}$ $\log t_{\rm low}$ $\log t_{\rm high}$ $[Z]_{\rm low}$ $[Z]_{\rm high}$ $\alpha$ $\beta$

log d
9 0.34897 3.90633 0.002 9.89178 9.95342  - 0.60089 0.19300 2.341 0.985
  14 0.35919 3.90633  - 0.001 9.88937 9.95245  - 0.60115 0.20684 2.341 1.111
  22 0.26617 3.90633 0.007 9.86685 9.95757  - 0.53389 0.30054 2.351 2.980
  34 0.31373 3.90633 0.001 9.87873 9.95335  - 0.57392 0.25198 2.341 1.613
  40 0.15102 3.90633 0.016 9.78469 10.12246  - 0.69199 0.07931 2.319  - 1.281
  52 0.35475 3.90633 0.012 9.89392 9.95002  - 0.59523 0.17305 2.338 0.936
$A_{\rm V}$ 9 0.25192 3.89083 0.000 9.87519 9.98656  - 0.50206 0.34423 2.391 2.613
  14 0.23362 3.88471 0.000 9.88175 9.99802  - 0.50635 0.40461 2.424 3.682
  22 0.30930 3.89399  - 0.001 9.91339 9.98285  - 0.55292 0.20319 2.383 0.889
  34 0.17545 3.89688 0.001 9.80693 10.1395  - 0.66073 0.10056 2.339  - 1.338
  40 0.26131 3.89634 0.001 9.82335 9.96459  - 0.51903 0.44994 2.355 3.493
  52 0.41406 3.90592 0.000 9.90287 9.95544  - 0.59621 0.17710 2.350 1.003
log $t_{\rm low}$ 9 0.34505 3.89687 0.030 9.90310 9.96292  - 0.59785 0.19586 2.358 1.028
  14 0.29609 3.90078 0.064 9.90308 9.93943  - 0.67152 0.10196 2.333 0.087
  22 0.34452 3.89289 0.026 9.90308 9.96482  - 0.57260 0.23664 2.362 1.435
  34 0.32855 3.89861 0.067 9.90309 9.94303  - 0.62670 0.14375 2.343 0.845
  40 0.35429 3.89657 0.014 9.90309 9.96685  - 0.56333 0.21007 2.358 1.130
  52 0.32296 3.89388 0.036 9.90309 9.96827  - 0.58340 0.21130 2.365 1.197
log $t_{\rm high}$ 9 0.32414 3.89839 0.033 9.88329 9.95424  - 0.55256 0.26193 2.341 1.674
  14 0.25502 3.89455 0.036 9.85431 9.95425  - 0.52027 0.39343 2.351 3.455
  22 0.26055 3.90038 0.022 9.76480 9.95423  - 0.52358 0.52141 2.333 4.267
  34 0.36575 3.89772 0.046 9.90052 9.95424  - 0.60081 0.20274 2.352 1.251
  40 0.25141 3.89839 0.042 9.75973 9.95424  - 0.56527 0.52340 2.335 4.878
  52 0.37074 3.89458 0.066 9.91101 9.95424  - 0.62634 0.16462 2.361 1.046
log $[Z]_{\rm low}$ 9 0.22556 3.89237 0.059 9.78605 9.96444  - 0.60205 0.48867 2.363 4.119
  14 0.32714 3.89352 0.031 9.89643 9.96409  - 0.60207 0.22149 2.354 0.907
  22 0.23902 3.89510 0.047 9.82960 9.95708  - 0.60205 0.45203 2.363 3.709
  34 0.27029 3.89729 0.040 9.84880 9.95803  - 0.60207 0.31992 2.327 1.756
  40 0.28851 3.89175 0.028 9.94114 9.97064  - 0.60206 0.10911 2.399 0.305
  52 0.26238 3.89419 0.041 9.87970 9.96558  - 0.60207 0.29439 2.375 2.197
log $[Z]_{\rm high}$ 9 0.32971 3.89633 0.044 9.90542 9.96035  - 0.58239 0.17609 2.363 1.182
  14 0.39924 3.89593 0.038 9.90880 9.96147  - 0.58144 0.17608 2.360 1.009
  22 0.40156 3.89579 0.053 9.90555 9.95702  - 0.60422 0.17608 2.357 1.057
  34 0.31199 3.89306 0.017 9.92288 9.97460  - 0.57681 0.17610 2.384 0.872
  40 0.35466 3.89952 0.044 9.90467 9.95065  - 0.61730 0.17609 2.349 1.010
  52 0.36582 3.89853 0.042 9.90077 9.95166  - 0.60430 0.17608 2.342 0.878
$\alpha$ 9 0.34047 3.89758 0.023 9.89805 9.96360  - 0.57367 0.19013 2.350 0.831
  14 0.17505 3.89826 0.014 9.82400 10.14663  - 0.62474 0.04615 2.349  - 1.950
  22 0.30768 3.89446 0.063 9.90882 9.95914  - 0.73991 0.12715 2.349  - 0.035
  34 0.31327 3.89614 0.019 9.87877 9.96638  - 0.52373 0.26868 2.350 1.784
  40 0.35728 3.89731 0.021 9.89219 9.96144  - 0.55927 0.23623 2.349 1.347
  52 0.33530 3.89702 0.027 9.89860 9.96481  - 0.54426 0.19782 2.350 1.039
$\beta$ 9 0.31038 3.89352 0.082 9.91755 9.94928  - 0.62624 0.13301 2.360 1.000
  14 0.38179 3.89881 0.033 9.90224 9.95851  - 0.57609 0.17513 2.352 1.000
  22 0.34095 3.89848 0.052 9.89348 9.95316  - 0.57848 0.18922 2.338 0.999
  34 0.16612 3.89537 0.028 9.80857 10.0490  - 0.44888 0.12520 2.382 1.001
  40 0.35606 3.90903 0.019 9.88940 9.94183  - 0.61022 0.17903 2.329 1.001
  52 0.31834 3.89857 0.073 9.91742 9.93856  - 0.61263 0.12154 2.350 1.000



 

 
Table A.3: AMORE with one of the parameters fixed at one sigma from its original value. These tests provide an indication about the influence of one parameter on the retrieval of the remaining parameters. In particular, how the remaining parameters balance this mis-match by moving away from their optimal value. See Sects. 4.3.4 and 5.4 for additional details.

parameter
offset model $f_{\rm A}$ log d $A_{\rm V}$ $\log t_{\rm low}$ $\log t_{\rm high}$ $[Z]_{\rm low}$ $[Z]_{\rm high}$ $\alpha$ $\beta$

log d
$-1\sigma$ 9 0.21045 3.90307 0.008 9.70661 9.95123  - 0.54348 0.59806 2.318 4.573
    14 0.29182 3.90307 0.005 9.92758 9.95781  - 0.64641 0.10745 2.368 0.062
    22 0.30663 3.90307 0.055 9.90867 9.93700  - 0.62003 0.13004 2.332 0.373
    34 0.27406 3.90307 0.009 9.93190 9.95224  - 0.64172 0.09083 2.376 0.329
    40 0.30508 3.90307 0.031 9.88057 9.94765  - 0.56412 0.23885 2.330 1.482
    52 0.35736 3.90307 0.051 9.89002 9.94201  - 0.61187 0.18455 2.331 1.072
  $+1\sigma$ 9 0.29273 3.90960 0.028 9.90776 9.93160  - 0.64116 0.10185 2.333 0.378
    14 0.33350 3.90960 0.007 9.89160 9.94261  - 0.62176 0.20013 2.336 1.201
    22 0.29174 3.90960 0.017 9.90814 9.94062  - 0.63653 0.11803 2.337 0.279
    34 0.15593 3.90960 0.000 9.82433 10.13280  - 0.74638 0.00763 2.346  - 1.894
    40 0.33700 3.90960 0.008 9.89589 9.94669  - 0.60483 0.15343 2.335 0.771
    52 0.26929 3.90960 0.032 9.91164 9.93459  - 0.64348 0.07215 2.340 0.145
$A_{\rm V}$ $+1\sigma$ 9 - - - - - - - - -
    14 0.27049 3.89442 0.014 9.79866 9.96608  - 0.52682 0.49361 2.358 4.064
    22 0.28352 3.89378 0.014 9.87464 9.97332  - 0.55944 0.30339 2.359 1.855
    34 0.28608 3.89345 0.014 9.88671 9.97642  - 0.54707 0.30071 2.376 1.973
    40 0.26382 3.89346 0.014 9.81948 9.96660  - 0.52576 0.46184 2.358 3.610
    52 0.31545 3.89363 0.014 9.90003 9.97313  - 0.56649 0.23400 2.372 1.349
log $t_{\rm low}$ $-1\sigma$ 9 0.27236 3.90040 0.040 9.85386 9.94757  - 0.55836 0.30935 2.323 1.896
    14 0.27545 3.89466 0.019 9.85386 9.97024  - 0.52819 0.37310 2.368 2.888
    22 0.27529 3.89648 0.018 9.85386 9.96558  - 0.54638 0.35495 2.350 2.384
    34 0.16883 3.89375 0.029 9.85386 10.08302  - 0.47457 0.01306 2.400  - 0.280
    40 0.28900 3.89953 0.033 9.85386 9.95405  - 0.56448 0.30320 2.324 1.779
    52 0.26942 3.89372 0.047 9.85386 9.96388  - 0.55833 0.34280 2.356 2.939
  $+1\sigma$ 9 0.26839 3.89058 0.041 9.95232 9.95626  - 0.54291 0.11856 2.399 0.517
    14 0.27352 3.88923 0.037 9.95232 9.96263  - 0.68969 0.08041 2.401  - 0.347
    22 0.27555 3.88867 0.037 9.95232 9.95915  - 0.59030 0.06926 2.399  - 0.175
    34 0.29222 3.88687 0.054 9.95232 9.95543  - 0.60299 0.07026 2.398  - 0.115
    40 0.26972 3.88983 0.045 9.95232 9.95314  - 0.61176 0.08503 2.400 0.007
    52 0.29660 3.89064 0.046 9.95232 9.95592  - 0.65754 0.08096 2.401 0.003
log $t_{\rm high}$ $-1\sigma$ 9 0.21567 3.90212 0.093 9.90420 9.90749  - 0.59379 0.10497 2.306 0.206
    14 0.25127 3.90319 0.111 9.90723 9.90749  - 0.68463 0.09099 2.318 0.272
    22 0.23271 3.90019 0.114 9.90634 9.90749  - 0.69157 0.08733 2.316 0.167
    34 0.24395 3.90526 0.113 9.89882 9.90749  - 0.64179 0.09370 2.307 0.470
    40 0.23796 3.90273 0.106 9.90270 9.90750  - 0.63701 0.10850 2.306 0.378
    52 0.19091 3.90474 0.105 9.85263 9.90750  - 0.54484 0.26544 2.274 2.304
  $+1\sigma$ 9 0.18966 3.88133  - 0.001 9.84694 10.00986  - 0.51375 0.40765 2.432 3.306
    14 0.22621 3.88298  - 0.001 9.91537 10.00986  - 0.50616 0.26567 2.437 2.059
    22 0.21599 3.88275 0.000 9.73977 10.00986  - 0.51424 0.51570 2.413 4.449
    34 0.20975 3.88419  - 0.001 9.91194 10.00985  - 0.51870 0.26155 2.427 2.046
    40 0.19191 3.88460 0.013 9.79535 10.00985  - 0.52199 0.43616 2.405 3.653
    52 0.21132 3.88557 0.002 9.90671 10.00987  - 0.51864 0.27274 2.422 2.044
log $[Z]_{\rm low}$ $-1\sigma$ 9 0.32236 3.89424 0.060 9.92490 9.94949  - 0.65235 0.09935 2.364 0.023
    14 0.19541 3.89205 0.085 9.80620 9.95304  - 0.65235 0.44787 2.367 4.219
    22 0.19646 3.89803 0.068 9.80556 9.95382  - 0.65235 0.48659 2.368 4.525
    34 0.19203 3.89730 0.066 9.76582 9.94810  - 0.65235 0.48742 2.316 4.023
    40 0.32867 3.89484 0.038 9.90919 9.95602  - 0.65235 0.18180 2.356 0.601
    52 0.28939 3.89843 0.035 9.88752 9.95511  - 0.65235 0.22274 2.337 0.836
  $+1\sigma$ 9 0.30963 3.89302 0.019 9.89547 9.97009  - 0.55177 0.26207 2.372 1.833
    14 0.32883 3.89295 0.022 9.91000 9.97315  - 0.55177 0.19130 2.365 0.778
    22 0.32293 3.89110 0.024 9.91831 9.96435  - 0.55177 0.18106 2.369 0.671
    34 0.26376 3.89625 0.024 9.86434 9.96369  - 0.55177 0.37255 2.361 2.928
    40 0.33593 3.89840 0.032 9.90057 9.96348  - 0.55177 0.17853 2.349 0.885
    52 0.32988 3.89341 0.033 9.90827 9.97162  - 0.55177 0.20534 2.376 1.416
log $[Z]_{\rm high}$ $-1\sigma$ 9 0.29612 3.89604 0.077 9.92807 9.93582  - 0.66338 0.04239 2.356  - 0.232
    14 0.29094 3.89708 0.082 9.92897 9.93400  - 0.67421 0.04239 2.359  - 0.139
    22 0.27692 3.89364 0.066 9.94038 9.95069  - 0.66032 0.04239 2.387  - 0.337
    34 0.28980 3.89736 0.083 9.92808 9.93087  - 0.63329 0.04239 2.357  - 0.095
    40 0.16160 3.90196 0.043 9.82928 10.10576  - 0.79270 0.04238 2.333  - 1.676
    52 0.30348 3.89643 0.078 9.92740 9.93508  - 0.66677 0.04239 2.355  - 0.238
  $+1\sigma$ 9 0.26702 3.88982 0.031 9.88500 9.97615  - 0.56217 0.30979 2.384 2.280
    14 0.29357 3.89392 0.012 9.88192 9.97494  - 0.53776 0.30979 2.371 2.129
    22 0.30635 3.89366 0.032 9.87176 9.96383  - 0.53473 0.30979 2.351 2.194
    34 0.25823 3.89389 0.046 9.87585 9.96245  - 0.53400 0.30979 2.357 2.578
    40 0.28417 3.89886 0.028 9.85863 9.95559  - 0.57966 0.30979 2.333 1.926
    52 0.28883 3.89501 0.020 9.88098 9.96677  - 0.55136 0.30979 2.367 2.284
$\alpha$ $-1\sigma$ 9 0.24524 3.90004 0.053 9.85726 9.94126  - 0.56638 0.28025 2.316 1.932
    14 0.28147 3.90272 0.020 9.87188 9.94707  - 0.54698 0.24944 2.316 1.230
    22 0.27797 3.89896 0.042 9.86368 9.94580  - 0.54982 0.26102 2.316 1.511
    34 0.22427 3.89644 0.032 9.82350 9.94534  - 0.50532 0.45532 2.316 3.679
    40 0.27857 3.90056 0.042 9.86375 9.94608  - 0.59271 0.26364 2.316 1.294
    52 0.28640 3.90139 0.039 9.85871 9.94768  - 0.58962 0.27721 2.316 1.438
  $+1\sigma$ 9 0.23946 3.89295 0.062 9.87606 9.96018  - 0.57093 0.35127 2.384 3.499
    14 0.25586 3.89172 0.014 9.86873 9.97973  - 0.53518 0.35320 2.384 2.919
    22 0.28357 3.89109 0.021 9.91357 9.97110  - 0.56888 0.24524 2.384 1.488
    34 0.29934 3.89146 0.023 9.91497 9.97387  - 0.58765 0.23086 2.384 1.461
    40 0.25505 3.89153 0.009 9.80529 9.97968  - 0.52454 0.51555 2.384 4.820
    52 0.30437 3.89128 0.026 9.90426 9.97836  - 0.55141 0.23875 2.384 1.620



 
Table A.3: continued.

parameter
offset model $f_{\rm A}$ log d $A_{\rm V}$ $\log t_{\rm low}$ $\log t_{\rm high}$ $[Z]_{\rm low}$ $[Z]_{\rm high}$ $\alpha$ $\beta$

$\beta$
$-1\sigma$ 9 0.29110 3.89717 0.083 9.93098 9.93961  - 0.68243 0.02188 2.365  - 0.397
    14 0.17266 3.89314 0.001 9.83767 10.08181  - 0.41912 0.06629 2.372  - 0.397
    22 0.30211 3.89619 0.084 9.91729 9.94002  - 0.68522 0.06730 2.348  - 0.397
    34 0.16366 3.89491 0.015 9.81889 10.08661  - 0.50001 0.09684 2.363  - 0.397
    40 0.16472 3.89974 0.018 9.80958 10.07264  - 0.54158 0.11992 2.357  - 0.397
    52 0.29684 3.89592 0.074 9.91808 9.93138  - 0.66681 0.08493 2.339  - 0.397
  $+1\sigma$ 9 0.26953 3.89638 0.045 9.86719 9.95699  - 0.57054 0.30738 2.346 2.397
    14 0.29111 3.89398 0.023 9.87948 9.97371  - 0.54141 0.30286 2.371 2.397
    22 0.28842 3.89548 0.029 9.86193 9.95692  - 0.53941 0.33240 2.341 2.397
    34 0.27336 3.89607 0.048 9.88719 9.95851  - 0.56455 0.27131 2.355 2.397
    40 0.26195 3.89766 0.038 9.87053 9.94793  - 0.58042 0.30908 2.345 2.397
    52 0.27328 3.89034 0.022 9.87427 9.97430  - 0.54963 0.33427 2.375 2.397



next previous
Up: Automatic observation rendering (AMORE)

Copyright ESO 2002