The state-to-state rotational inelastic rates are the Boltzmann thermal averages of the
state-to-state inelastic cross sections:
We perform CC calculations with a B(j, 2) basis set in the energy range from the opening of the lowest inelastic channel to 381 cm-1 for ortho H2O, and to 380 cm-1 for para H2O. The energies are total energies. We use a B(j, 4) basis set and CS calculations above the energy threshold of the opening of the j2 =2 rotational level of H2. We carefully spanned the energy ranges above the inelastic channels and we added more points in presence of broad resonance structures. For ortho water the energy step is 0.1 cm-1 below 97 cm-1, 0.1, 0.2 or 0.5 cm-1 in an energy range of 20 cm-1 above each inelastic threshold, and small but irregular in the other energy ranges. For para water the energy step is 0.1 cm-1 from 37.2 cm-1 to 75.2 cm-1, 0.2 cm-1 from 75.2 cm-1 to 80 cm-1, 1 cm-1 between 80 cm-1 and 175 cm-1 (with some additional points every 0.2 cm-1 or 0.5 cm-1) and 1 cm-1 or 5 cm-1 above 175 cm-1.
For a collision of H2O with para-H2 Phillips et al. (1995) pointed out that
it is necessary to use a B(j, 2) basis set instead of a B(j, 0) basis set
in the temperature range from 20 K to 140 K.
This is still important at very low temperature;
we find a relative difference of 31% at T=8 K and of 22% at T=20 K
between the collision rates
calculated
respectively with a B(5, 2) and a B(5, 0) basis set.
The j2=2 channel of H2 has a strong influence on the resonance
structure at low energy.
As an example,
Fig. 2 shows the change in the resonance structure of
the CC
cross section
calculated with and without the j2=2 channel of H2.
![]() |
Figure 2:
Resonance structures of the CC
![]() |
The presence of overlapping resonances necessitates the use of a very fine
grid of energy points in the thermal Boltzmann average (Eq. (1)) in order
to correctly reproduce the resonance structure.
This is illustrated in Fig. 3 for
the transition
,
showing that the
collision rate
varies
significantly
and randomly with respect to small changes in the energy
step size. Our best integrals are done by a Simpson rule using integration
energy points which follow the calculated cross sections. Our low-energy step
size of 0.1 cm-1 is particularly small; other published
results (Phillips et al. 1996) at 20 K are usually obtained with sparser energy
grids because of the computing time required.
![]() |
Figure 3:
Inelastic rate constants (in cm3 s-1)
of the
![]() |
Another issue is the use of CS calculations in the highest energy range. The CS calculations are relatively accurate for the lowest rotational transitions, but are particularly inaccurate for the largest rotational transitions. Nevertheless the ratio between CC calculations and CS calculations is roughly constant at energies between 328 cm-1 and 381 cm-1, and we use this ratio to scale our CS calculations above 388 cm-1.
Finally we investigate the addition of the j2=4 channel for calculations at energies higher that the opening of the j2=2 channel. The overall effect is negligible at the temperatures considered here.
Tables 3 and 4 give the effective rotational inelastic
rates for ortho and para H2O respectively,
together with the values
obtained by Phillips et al. (1996) at 20 K. These effective rotational
inelastic rates correspond to the sum of the inelastic rates (Eq. (1))
over the final
j2' states for a given initial j2:
We believe that the discrepancies between our rates and the Phillips et al. (1996) rates at 20 K are mainly due to the sparser energy grid used by those authors and that our rate coefficients have an overall accuracy of 3% minimum for all given transitions and temperatures.
For astrophysical use, all our effective excitation rates may be fitted by
the analytical form used by Balakrishnan et al. (1999):
This fitted functions are very different
from the function sometimes used by astrophysicists, when no data are
available:
![]() |
Figure 4:
Comparison between the effective calculated CC rates (Eq. (2))
and the rates obtained with Eq. (4),
for the transition
![]() |
Moreover the deexcitation rate of
the
transition increases when the temperature
decreases,
and the deexcitation rates from the 30,3 level increase and
then decrease again when the temperature decreases.
It is therefore not justified to use this simple approximation at very low
temperature.
Initial | Final | Points | 5 | 8 | 12 | 16 | 20 | 20 |
10,1 | 11,0 | 1033 | 3.92(-14) | 4.34(-13) | 1.71(-12) | 3.36(-12) | 4.99(-12) | 3.06(-12) |
10,1 | 21,2 | 680 | 3.69(-18) | 1.54(-15) | 4.41(-14) | 2.37(-13) | 6.52(-13) | 6.10(-13) |
10,1 | 22,1 | 441 | 7.74(-26) | 1.35(-20) | 1.12(-17) | 3.25(-16) | 2.46(-15) | 2.42(-15) |
10,1 | 30,3 | 424 | 1.42(-25) | 2.89(-20) | 2.60(-17) | 7.82(-16) | 6.04(-15) | 5.88(-15) |
10,1 | 31,2 | 353 | 1.86(-31) | 2.03(-24) | 1.70(-20) | 1.56(-18) | 2.34(-17) | 2.26(-17) |
10,1 | 32,1 | 272 | 4.73(-36) | 3.30(-27) | 2.74(-22) | 7.95(-20) | 2.40(-18) | 1.74(-18) |
10,1 | 33,0 | 92 | 4.03(-46) | 7.54(-34) | 4.95(-27) | 1.26(-23) | 1.40(-21) | 8.57(-22) |
10,1 | 41,4 | 211 | 8.56(-37) | 2.23(-27) | 3.81(-22) | 1.57(-19) | 5.78(-18) | 5.98(-18) |
10,1 | 42,3 | 62 | 1.00(-47) | 9.20(-35) | 1.47(-27) | 5.91(-24) | 8.61(-22) | 8.05(-22) |
11,0 | 10,1 | 1033 | 8.22(-12) | 1.23(-11) | 1.58(-11) | 1.78(-11) | 1.90(-11) | 1.17(-11) |
11,0 | 21,2 | 680 | 6.10(-16) | 3.56(-14) | 3.44(-13) | 1.07(-12) | 2.10(-12) | 1.94(-12) |
11,0 | 22,1 | 441 | 9.16(-23) | 2.05(-18) | 5.36(-16) | 8.60(-15) | 4.53(-14) | 4.44(-14) |
11,0 | 30,3 | 424 | 1.37(-23) | 3.72(-19) | 1.07(-16) | 1.80(-15) | 9.73(-15) | 9.90(-15) |
11,0 | 31,2 | 353 | 4.17(-28) | 6.06(-22) | 1.64(-18) | 8.56(-17) | 9.23(-16) | 8.63(-16) |
11,0 | 32,1 | 272 | 3.32(-34) | 3.10(-26) | 8.42(-22) | 1.40(-19) | 3.06(-18) | 2.56(-18) |
11,0 | 33,0 | 92 | 4.30(-43) | 1.05(-31) | 2.17(-25) | 3.10(-22) | 2.42(-20) | 2.45(-20) |
11,0 | 41,4 | 211 | 1.74(-35) | 6.07(-27) | 3.40(-22) | 8.07(-20) | 2.16(-18) | 2.12(-18) |
11,0 | 42,3 | 62 | 1.93(-44) | 2.37(-32) | 1.25(-25) | 2.87(-22) | 3.00(-20) | 2.57(-20) |
21,2 | 10,1 | 680 | 2.03(-11) | 2.07(-11) | 2.10(-11) | 2.13(-11) | 2.15(-11) | 2.02(-11) |
21,2 | 11,0 | 680 | 1.60(-11) | 1.69(-11) | 1.77(-11) | 1.81(-11) | 1.82(-11) | 1.68(-11) |
21,2 | 22,1 | 441 | 1.22(-18) | 4.71(-16) | 1.30(-14) | 6.81(-14) | 1.84(-13) | 1.64(-13) |
21,2 | 30,3 | 424 | 1.95(-18) | 9.56(-16) | 2.97(-14) | 1.64(-13) | 4.51(-13) | 5.01(-13) |
21,2 | 31,2 | 353 | 4.45(-23) | 1.22(-18) | 3.60(-16) | 6.20(-15) | 3.41(-14) | 3.12(-14) |
21,2 | 32,1 | 272 | 3.08(-28) | 5.19(-22) | 1.50(-18) | 8.04(-17) | 8.77(-16) | 8.95(-16) |
21,2 | 33,0 | 92 | 1.08(-38) | 5.00(-29) | 1.17(-23) | 5.67(-21) | 2.32(-19) | 2.08(-19) |
21,2 | 41,4 | 211 | 4.22(-30) | 2.79(-23) | 1.74(-19) | 1.38(-17) | 1.92(-16) | 1.42(-16) |
21,2 | 42,3 | 62 | 2.82(-40) | 6.42(-30) | 3.64(-24) | 2.73(-21) | 1.44(-19) | 1.20(-19) |
22,1 | 10,1 | 441 | 3.56(-12) | 3.87(-12) | 4.11(-12) | 4.26(-12) | 4.37(-12) | 4.32(-12) |
22,1 | 11,0 | 441 | 2.01(-11) | 2.08(-11) | 2.11(-11) | 2.12(-11) | 2.11(-11) | 2.08(-11) |
22,1 | 21,2 | 441 | 1.03(-11) | 1.00(-11) | 9.97(-12) | 9.93(-12) | 9.89(-12) | 8.84(-12) |
22,1 | 30,3 | 424 | 1.50(-12) | 2.13(-12) | 2.66(-12) | 2.95(-12) | 3.08(-12) | 2.76(-12) |
22,1 | 31,2 | 353 | 1.62(-16) | 1.31(-14) | 1.53(-13) | 5.12(-13) | 1.04(-12) | 8.43(-13) |
22,1 | 32,1 | 272 | 6.50(-21) | 2.96(-17) | 3.23(-15) | 3.37(-14) | 1.38(-13) | 1.06(-13) |
22,1 | 33,0 | 92 | 4.41(-30) | 5.11(-23) | 4.28(-19) | 3.89(-17) | 5.83(-16) | 5.77(-16) |
22,1 | 41,4 | 211 | 1.15(-23) | 1.89(-19) | 4.20(-17) | 6.31(-16) | 3.23(-15) | 3.84(-15) |
22,1 | 42,3 | 62 | 4.72(-33) | 2.83(-25) | 6.08(-21) | 9.03(-19) | 1.84(-17) | 1.16(-17) |
30,3 | 10,1 | 424 | 8.02(-12) | 8.30(-12) | 8.54(-12) | 8.67(-12) | 8.76(-12) | 8.56(-12) |
30,3 | 11,0 | 424 | 3.70(-12) | 3.77(-12) | 3.79(-12) | 3.75(-12) | 3.71(-12) | 3.79(-12) |
30,3 | 21,2 | 424 | 2.01(-11) | 2.04(-11) | 2.04(-11) | 2.02(-11) | 1.99(-11) | 2.21(-12) |
30,3 | 22,1 | 424 | 1.84(-12) | 2.14(-12) | 2.38(-12) | 2.49(-12) | 2.52(-12) | 2.26(-12) |
30,3 | 31,2 | 353 | 3.12(-16) | 1.71(-14) | 1.60(-13) | 4.88(-13) | 9.54(-13) | 1.02(-12) |
30,3 | 32,1 | 272 | 1.08(-21) | 4.11(-18) | 3.97(-16) | 3.85(-15) | 1.49(-14) | 1.10(-14) |
30,3 | 33,0 | 92 | 2.50(-31) | 2.34(-24) | 1.72(-20) | 1.46(-18) | 2.08(-17) | 1.87(-17) |
30,3 | 41,4 | 211 | 4.18(-22) | 5.63(-18) | 1.11(-15) | 1.54(-14) | 7.41(-14) | 6.94(-14) |
30,3 | 42,3 | 62 | 9.24(-33) | 4.60(-25) | 8.88(-21) | 1.25(-18) | 2.46(-17) | 1.89(-17) |
Initial | Final | Points | 5 | 8 | 12 | 16 | 20 | 20 |
00,0 | 11,1 | 642 | 8.47(-16) | 5.37(-14) | 5.26(-13) | 1.62(-12) | 3.17(-12) | 3.17(-12) |
00,0 | 20,2 | 313 | 1.24(-19) | 2.51(-16) | 1.74(-14) | 1.45(-13) | 5.16(-13) | 4.72(-13) |
00,0 | 21,1 | 208 | 3.30(-25) | 1.96(-20) | 9.95(-18) | 2.24(-16) | 1.42(-15) | 8.42(-16) |
00,0 | 22,0 | 141 | 5.96(-29) | 1.56(-22) | 5.72(-19) | 3.47(-17) | 4.09(-16) | 2.99(-16) |
00,0 | 31,3 | 123 | 3.14(-29) | 1.47(-22) | 7.47(-19) | 5.28(-17) | 6.75(-16) | 6.97(-16) |
00,0 | 32,2 | 83 | 1.89(-40) | 9.58(-31) | 2.46(-25) | 1.29(-22) | 5.76(-21) | 4.78(-21) |
00,0 | 40,4 | 72 | 2.94(-40) | 7.27(-30) | 4.33(-24) | 3.35(-21) | 1.82(-19) | 1.54(-19) |
00,0 | 41,3 | 54 | 1.08(-48) | 1.73(-35) | 3.92(-28) | 1.82(-24) | 2.79(-22) | 9.74(-34) |
00,0 | 33,1 | 44 | 4.90(-49) | 1.38(-35) | 4.03(-28) | 2.15(-24) | 3.66(-22) | 2.71(-22) |
11,1 | 00,0 | 642 | 1.24(-11) | 1.42(-11) | 1.51(-11) | 1.53(-11) | 1.53(-11) | 1.53(-11) |
11,1 | 20,2 | 313 | 2.71(-15) | 8.35(-14) | 5.54(-13) | 1.41(-12) | 2.45(-12) | 1.55(-12) |
11,1 | 21,1 | 208 | 4.29(-18) | 2.42(-15) | 8.35(-14) | 4.92(-13) | 1.42(-12) | 1.33(-12) |
11,1 | 22,0 | 141 | 1.16(-23) | 5.19(-19) | 1.97(-16) | 3.80(-15) | 2.23(-14) | 2.43(-14) |
11,1 | 31,3 | 123 | 8.74(-25) | 7.88(-20) | 4.55(-17) | 1.10(-15) | 7.47(-15) | 7.01(-15) |
11,1 | 32,2 | 83 | 2.71(-33) | 2.46(-25) | 6.57(-21) | 1.07(-18) | 2.26(-17) | 2.12(-17) |
11,1 | 40,4 | 72 | 6.91(-35) | 3.18(-26) | 2.07(-21) | 5.28(-19) | 1.46(-17) | 1.28(-17) |
11,1 | 41,3 | 54 | 1.26(-43) | 2.57(-32) | 5.29(-26) | 7.64(-23) | 5.99(-21) | 2.07(-21) |
11,1 | 33,1 | 44 | 7.33(-44) | 3.36(-32) | 1.01(-25) | 1.74(-22) | 1.51(-20) | 1.30(-20) |
20,2 | 00,0 | 313 | 1.43(-11) | 1.50(-11) | 1.56(-11) | 1.58(-11) | 1.60(-11) | 1.46(-11) |
20,2 | 11,1 | 313 | 2.16(-11) | 1.89(-11) | 1.73(-11) | 1.64(-11) | 1.58(-11) | 9.95(-12) |
20,2 | 21,1 | 208 | 7.44(-15) | 1.20(-13) | 5.84(-13) | 1.32(-12) | 2.18(-12) | 1.81(-12) |
20,2 | 22,0 | 141 | 2.56(-20) | 3.49(-17) | 1.90(-15) | 1.39(-14) | 4.55(-14) | 4.03(-14) |
20,2 | 31,3 | 123 | 3.19(-20) | 7.86(-17) | 6.01(-15) | 5.22(-14) | 1.90(-13) | 2.41(-13) |
20,2 | 32,2 | 83 | 3.67(-29) | 1.00(-22) | 3.87(-19) | 2.42(-17) | 2.91(-16) | 2.25(-16) |
20,2 | 40,4 | 72 | 6.12(-31) | 8.34(-24) | 7.82(-20) | 7.64(-18) | 1.20(-16) | 7.72(-17) |
20,2 | 41,3 | 54 | 1.45(-38) | 6.49(-29) | 1.51(-23) | 7.24(-21) | 2.93(-19) | 2.52(-19) |
20,2 | 33,1 | 44 | 4.04(-40) | 5.37(-30) | 2.28(-24) | 1.49(-21) | 7.23(-20) | 5.97(-20) |
21,1 | 00,0 | 208 | 5.16(-14) | 1.06(-13) | 1.80(-13) | 2.33(-13) | 2.67(-13) | 1.59(-13) |
21,1 | 11,1 | 208 | 4.70(-11) | 5.01(-11) | 5.30(-11) | 5.47(-11) | 5.56(-11) | 5.20(-11) |
21,1 | 20,2 | 208 | 1.04(-11) | 1.10(-11) | 1.19(-11) | 1.27(-11) | 1.33(-11) | 1.10(-11) |
21,1 | 22,0 | 141 | 9.83(-17) | 8.69(-15) | 1.05(-13) | 3.66(-13) | 7.75(-13) | 7.99(-13) |
21,1 | 31,3 | 123 | 6.77(-18) | 1.13(-15) | 1.97(-14) | 8.27(-14) | 1.96(-13) | 2.20(-13) |
21,1 | 32,2 | 83 | 2.70(-25) | 4.67(-20) | 3.83(-17) | 1.09(-15) | 8.16(-15) | 8.64(-15) |
21,1 | 40,4 | 72 | 6.48(-28) | 5.72(-22) | 1.15(-18) | 5.13(-17) | 5.00(-16) | 4.79(-16) |
21,1 | 41,3 | 54 | 1.01(-34) | 3.07(-26) | 1.61(-21) | 3.69(-19) | 9.68(-18) | 8.84(-18) |
21,1 | 33,1 | 44 | 1.04(-36) | 9.22(-28) | 8.64(-23) | 2.65(-20) | 8.20(-19) | 7.01(-19) |
22,0 | 00,0 | 141 | 1.24(-12) | 1.35(-12) | 1.41(-12) | 1.44(-12) | 1.47(-12) | 1.08(-12) |
22,0 | 11,1 | 141 | 1.66(-11) | 1.70(-11) | 1.70(-11) | 1.68(-11) | 1.67(-11) | 1.82(-11) |
22,0 | 20,2 | 141 | 4.64(-12) | 5.07(-12) | 5.26(-12) | 5.29(-12) | 5.28(-12) | 4.68(-12) |
22,0 | 21,1 | 141 | 1.31(-11) | 1.39(-11) | 1.44(-11) | 1.46(-11) | 1.48(-11) | 1.53(-11) |
22,0 | 31,3 | 123 | 6.15(-13) | 1.47(-12) | 2.31(-12) | 2.84(-12) | 3.19(-12) | 2.97(-12) |
22,0 | 32,2 | 83 | 4.20(-20) | 9.11(-17) | 6.64(-15) | 5.69(-14) | 2.06(-13) | 1.69(-13) |
22,0 | 40,4 | 72 | 9.07(-24) | 1.10(-19) | 2.19(-17) | 3.17(-16) | 1.60(-15) | 1.14(-15) |
22,0 | 41,3 | 54 | 1.67(-29) | 5.81(-23) | 2.49(-19) | 1.61(-17) | 1.95(-16) | 2.03(-16) |
22,0 | 33,1 | 44 | 6.15(-30) | 6.46(-23) | 5.10(-19) | 4.50(-17) | 6.59(-16) | 5.69(-16) |
10,1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.3789 | -10.3869 | -10.4242 | -10.1245 | -13.3466 | -10.5093 | -12.0445 | -10.8861 | -11.5006 |
1 | -4.7441 | -0.2613 | -5.6338 | -4.8861 | 11.3629 | -9.7223 | -5.8542 | -1.3445 | -7.5809 |
2 | 24.9341 | 0.6404 | 17.8475 | 16.4054 | -32.8114 | 29.5880 | 19.9022 | 6.4072 | 23.4461 |
3 | -63.5843 | -36.1877 | -96.0049 | -95.6008 | -54.0267 | -158.7750 | -192.9309 | -137.2240 | -205.2970 |
4 | 33.6533 | 1.0748 | 14.5757 | 14.0471 | -17.1286 | 21.4216 | 15.8422 | 7.3395 | 16.8892 |
11,0 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.3790 | -11.3329 | -10.4073 | -11.0068 | -10.3319 | -9.8782 | -11.0402 | -10.6540 | -10.9188 |
1 | -4.7429 | 6.3667 | -1.2021 | -1.8128 | -4.7552 | -18.2030 | -9.2674 | -10.5835 | -4.3408 |
2 | 24.9290 | -17.4588 | 6.3569 | 9.5160 | 14.9783 | 53.5639 | 31.1035 | 31.8810 | 13.3318 |
3 | -51.9665 | -3.4010 | -69.8925 | -76.5337 | -104.3242 | -176.9589 | -196.1172 | -156.7395 | -180.0520 |
4 | 33.6462 | -8.1578 | 7.4937 | 10.7398 | 12.6088 | 35.2050 | 22.9118 | 21.6240 | 10.1984 |
21,2 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.6089 | -11.5549 | -11.3716 | -10.8916 | -10.7837 | -10.5286 | -11.2588 | -10.1292 | -11.5120 |
1 | -0.2603 | 6.3682 | 2.5079 | 0.9378 | 1.6764 | -3.5781 | -8.1435 | -8.3748 | -4.2104 |
2 | 0.6373 | -17.4630 | -5.9200 | 2.5525 | -2.5947 | 12.5517 | 26.4021 | 25.7030 | 15.0179 |
3 | -1.3776 | 19.8017 | -29.3305 | -45.8541 | -60.1146 | -102.3052 | -166.5589 | -126.8035 | -160.9790 |
4 | 1.0703 | -8.1609 | -1.0016 | 7.9531 | 3.0985 | 10.9290 | 19.9855 | 19.0032 | 12.6855 |
22,1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.6461 | -10.6291 | -11.3724 | -13.0673 | -12.0170 | -10.0915 | -10.0619 | -10.3800 | -10.2047 |
1 | -5.6341 | -1.2025 | 2.5147 | 11.2569 | 6.9286 | -3.1601 | -4.4991 | -10.0755 | -10.0538 |
2 | 17.8482 | 6.3577 | -5.9381 | -25.8984 | -8.6326 | 11.5113 | 15.6783 | 29.3176 | 28.7513 |
3 | -26.5755 | -12.0689 | 5.3138 | 20.0093 | -31.3570 | -67.5097 | -117.5229 | -94.5043 | -141.7895 |
4 | 14.5678 | 7.4829 | -1.0202 | -4.1370 | 11.9464 | 11.2662 | 12.6528 | 18.8642 | 19.5192 |
30,3 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.4976 | -11.3806 | -11.0451 | -13.2231 | -10.4944 | -11.3084 | -11.8466 | -10.5371 | -10.5972 |
1 | -4.8374 | -1.7583 | 1.0069 | 11.3465 | -3.4844 | -3.3325 | -2.8068 | 0.1307 | -6.1213 |
2 | 16.2259 | 9.3249 | 2.3076 | -26.2015 | 12.5320 | 16.7656 | 11.6927 | 3.0931 | 16.3962 |
3 | -24.7090 | -17.2451 | -9.6763 | 21.6127 | -43.2403 | -78.3356 | -111.5536 | -63.4955 | -123.5756 |
4 | 13.8780 | 10.5731 | 7.7369 | -4.3454 | 11.8678 | 19.0277 | 10.2459 | 6.1810 | 10.6898 |
00,0 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -9.9974 | -10.4731 | -15.8034 | -9.6994 | -10.9421 | -6.4746 | -11.2512 | -14.6925 | -13.3543 |
1 | -4.1238 | 2.6873 | 29.8017 | -11.6981 | 0.6573 | -57.8975 | -4.5555 | 10.2500 | 5.5504 |
2 | 16.6079 | -6.0654 | -72.3553 | 36.0829 | 1.3266 | 172.7658 | 13.8900 | -11.8564 | -12.2570 |
3 | -49.8872 | -39.5805 | 0.5622 | -134.7151 | -94.7562 | -360.7653 | -157.5076 | -188.2216 | -167.9145 |
4 | 13.9732 | -0.1119 | -12.5992 | 24.9535 | 4.7175 | 116.9532 | 9.7020 | 20.7752 | -3.6496 |
11,1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.4760 | -11.3828 | -10.5967 | -10.1736 | -10.3632 | -11.4142 | -11.2061 | -13.4431 | -11.9383 |
1 | -4.1109 | 5.1435 | 4.5018 | -4.2417 | -3.5859 | -0.4472 | 0.7173 | 4.7008 | -1.5315 |
2 | 16.5666 | -12.8492 | -11.8574 | 15.9061 | 11.2659 | 5.0774 | -0.5198 | -6.3091 | 6.5207 |
3 | -26.6238 | -5.2013 | -24.7220 | -86.3470 | -83.1425 | -118.5232 | -117.2276 | -157.9642 | -166.4029 |
4 | 13.9434 | -6.4753 | -3.4580 | 13.2265 | 10.0649 | 9.2072 | 2.1318 | 13.1971 | 6.4090 |
20,2 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -11.1739 | -11.6110 | -10.9854 | -10.9788 | -10.5715 | -10.7710 | -10.4586 | -12.7111 | -13.1334 |
1 | 2.7033 | 5.2053 | 3.0807 | -3.7934 | -0.2219 | -3.9628 | -5.3168 | 4.5269 | 5.8649 |
2 | -6.1182 | -13.0745 | -13.6358 | 15.7831 | 4.0774 | 13.6220 | 15.7231 | -11.8668 | -16.8304 |
3 | 4.2901 | 15.7584 | 4.5238 | -67.6138 | -54.9645 | -108.2711 | -117.2091 | -115.8773 | -114.2936 |
4 | -0.1446 | -6.6583 | -10.1398 | 14.7956 | 6.8654 | 14.0995 | 12.1368 | -4.6166 | -9.1990 |
21,1 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -16.4968 | -10.8369 | -10.9983 | -9.8342 | -10.3130 | -10.7596 | -11.3061 | -11.0861 | -12.0892 |
1 | 29.7469 | 4.6805 | 3.2181 | -8.6413 | -7.1411 | 0.5537 | -0.7842 | -2.1446 | -0.5204 |
2 | -72.1527 | -12.5063 | -14.1846 | 28.4892 | 21.2772 | 1.2362 | 3.9445 | 6.9918 | 2.5470 |
3 | 59.6970 | 12.5799 | 21.1504 | -67.4964 | -58.5062 | -76.1090 | -86.4823 | -124.3064 | -124.2489 |
4 | -12.3982 | -3.9974 | -10.6578 | 22.5416 | 14.9127 | 5.7028 | 4.4782 | 6.9657 | 3.3339 |
22,0 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | -10.3972 | -10.3940 | -10.9777 | -9.8348 | -10.4334 | -10.5110 | -12.6026 | -11.8090 | -10.6685 |
1 | -11.7096 | -4.2531 | -3.8024 | -8.6350 | -9.1989 | -0.0096 | 7.1506 | 2.2873 | 0.4973 |
2 | 36.1275 | 15.9426 | 15.8180 | 28.4687 | 34.6227 | 2.3748 | -27.5952 | -2.6543 | 0.8718 |
3 | -49.6940 | -24.5160 | -26.3855 | -41.8535 | -58.1543 | -52.4147 | -14.3669 | -88.8274 | -97.3576 |
4 | 24.9949 | 13.2622 | 14.8394 | 22.5386 | 29.0011 | 6.9352 | -19.7570 | 3.1452 | 2.9082 |
Copyright ESO 2002