next previous
Up: Search for non-helical disc


   
Appendix A: A gauge in which magnetic helicity and magnetic helicity flux are automatically gauge invariant

The purpose of this appendix is to show that there is a particular gauge for the vector potential of the one-dimensional mean field such that $\int\overline{\vec{A}}\cdot\overline{\vec{B}}\,{\rm d} {}z$ is automatically gauge invariant. This allows us then to define a local helicity flux such that its integral over a closed surface (top and bottom of a slab) equals the gauge invariant integrated helicity flux of BD2001.

The evolution equation of the mean (one-dimensional) magnetic vector potential is

 \begin{displaymath}\dot{\overline{\vec{A}}}=-(\overline{\vec{E}}-\overline{\vec{E}}_0),
\end{displaymath} (A.1)

where $\vec{E}=\eta\mu_0\vec{J}-\vec{u}\times\vec{B}$ is the electric field, $\overline{\vec{E}}_0=\overline{\vec{E}}_0(t)$ is an integration constant, and $\overline{\vec{A}}$ and $\overline{\vec{E}}$ depend only on z and t. From Eq. (A.1) follows the evolution equation for the magnetic helicity density,

 \begin{displaymath}{\partial\over\partial t}({\overline{\vec{A}}}\cdot{\overline...
...rline{\vec{A}}}]
=-2\overline{\vec{E}}\cdot\overline{\vec{B}}.
\end{displaymath} (A.2)

In BD2001 the gauge independent magnetic helicity of the mean field was found to be

 \begin{displaymath}H_{\rm mean}=\int_{z_1}^{z_2}
\overline{\vec{A}}\cdot\overlin...
...\vec{z}}\cdot(\overline{\vec{A}}_1\times\overline{\vec{A}}_2),
\end{displaymath} (A.3)

where $\overline{\vec{A}}_1$ and $\overline{\vec{A}}_2$ are the values of $\overline{\vec{A}}$ at z=z1 and z2, respectively. At the initial time one can always subtract a constant from $\overline{\vec{A}}$ such that the second term vanishes. This constant turns out to be the average of $\overline{\vec{A}}_1$ and $\overline{\vec{A}}_2$, so we replace initially

\begin{displaymath}\overline{\vec{A}}\rightarrow\overline{\vec{A}}-\overline{\ve...
...tyle{1\over2}}(\overline{\vec{A}}_1+\overline{\vec{A}}_2)\cdot
\end{displaymath} (A.4)

Next we choose $\overline{\vec{E}}_0$ such that $\overline{\vec{A}}_1+\overline{\vec{A}}_2$ remains zero at all later times. This yields

\begin{displaymath}\overline{\vec{E}}_0={\textstyle{1\over2}}(\overline{\vec{E}}_1+\overline{\vec{E}}_2)\cdot
\end{displaymath} (A.5)

We can then express the two integrated fluxes on z2 as

\begin{displaymath}Q_{\rm mean}^{(2)}=\hat{\vec{z}}\cdot[
(\overline{\vec{E}}_2+...
...over2}}\overline{\vec{E}}_1)\times{\overline{\vec{A}}}_2]\cdot
\end{displaymath} (A.6)

Using the fact that $\overline{\vec{A}}_1+\overline{\vec{A}}_2=0$ we can write

\begin{displaymath}{\textstyle\int_{z_1}^{z_2}}\overline{\vec{B}}\,{\rm d} {}z
=...
...verline{\vec{A}}_2
=-2\hat{\vec{z}}\times\overline{\vec{A}}_1.
\end{displaymath} (A.7)

This allows us to express $Q_{\rm mean}^{(2)}$ as

\begin{displaymath}Q_{\rm mean}^{(2)}=-({\textstyle{3\over4}}\overline{\vec{E}}_...
...ot{\textstyle\int_{z_1}^{z_2}}\overline{\vec{B}}\,{\rm d} {}z.
\end{displaymath} (A.8)

At z=z1 we count the flux as negative when helicity leaves the domain in the downward direction, so

\begin{displaymath}Q_{\rm mean}^{(1)}=+({\textstyle{3\over4}}\overline{\vec{E}}_...
...ot{\textstyle\int_{z_1}^{z_2}}\overline{\vec{B}}\,{\rm d} {}z,
\end{displaymath} (A.9)

with $Q_{\rm mean}=Q_{\rm mean}^{(2)}-Q_{\rm mean}^{(1)}$ being the gauge invariant magnetic helicity flux of BD2001. The average upward flux of mean magnetic helicity on the two boundaries is

\begin{displaymath}Q_{\rm mean}^{\rm (up)}
={\textstyle{1\over2}}\left[Q_{\rm me...
...{\textstyle\int_{z_1}^{z_2}}\overline{\vec{B}}\,{\rm d} {}z.\;
\end{displaymath} (A.10)


next previous
Up: Search for non-helical disc

Copyright ESO 2001