next previous
Up: Envelope tomography of long-period stars


Subsections

   
2 Sample and observations

This section describes the two-year-long monitoring of a large sample of LPV stars performed with ELODIE at the Observatoire de Haute-Provence (France) at a frequency of about one night per month, weather-permitting.

   
2.1 The spectrovelocimeter ELODIE

The fibre-fed echelle spectrograph ELODIE (Baranne et al. 1996) is mounted on the 1.93-m telescope of the Observatoire de Haute-Provence (France). This instrument is designed to perform very accurate radial-velocity measurements by cross-correlating the stellar spectrum with numerical masks. In one exposure an echelle spectrum at a resolution of 42000 ranging from 3906 Å to 6811 Å is recorded. Then, an automatic on-line data processing extracts a 2-D spectrum (67 orders $\times$ 1044 pixels) from the echelle spectrum. We developed our own cross-correlation procedure, following the prescriptions of Baranne et al. (1996). We have thus the possibility of using our own numerical templates and to perform different kinds of tests in the computation of the cross-correlation function (CCF). The CCF is computed directly from the 2-D spectrum. First, it is wavelength-calibrated, then corrected from the value of the Earth barycentric velocity towards the star. To preserve the accuracy, the CCF is computed without either rebinning or merging the orders. Only orders having an average signal-to-noise (S/N) ratio greater than 2.0 are used.

Two templates have been systematically used in a first step to compute the CCFs of the whole sample: (i) the default K0III mask provided in the ELODIE reduction software (Baranne et al. 1996); (ii) a M4V mask constructed by Delfosse et al. (1999) from an ELODIE spectrum of Barnard's star (Gl 699) applying the method of Baranne et al. (1979). Although the K0III template may in fact seem inadequate to study much cooler LPVs, it was argued in Sect. 2.2 of Alvarez et al. (2001; hereafter Paper II) that "warm'' masks like the K0III one are more prone to detect line doubling (see also Sects. 3 and 4.3.2.1). On the other hand, it has been checked a posteriori (see the discussion in Sect. 4.3.2.1 in relation with Fig. 10) that the M4V mask yields CCFs that are identical to those obtained with a mask mimicking the spectrum of the M4.5III star HD 123657 (see Table 1).

2.2 The sample

The sample is composed of: (i) 6 circumpolar Miras (SUCam, SUMi, RTDra, AXCep, SCep, RYCep) that can be observed all along the pulsational cycle; (ii) 76 LPVs (Mira and semi-regular variables) of different periods, chemical compositions, spectral types and brightness ranges, observed at different phases; (iii) 8 non-LPV red giants; (iv) 3 radial-velocity standard stars. The entire sample (93 stars) is presented in Table 1: for each star are indicated its GCVS (General Catalogue of Variable Stars, Kholopov et al. 1988) name (or the HD number); its right ascension and declination (2000.0); its variability type, period, spectral type and brightness range as given by the GCVS; the number of observations N. The last column indicates whether the star is circumpolar ("circum.''), non-LPV ("non-LPV'') or radial-velocity standard ("r.v. st.'').


 

 
Table 1: Sample stars.

Name
Right Asc. Declination Variability Period Spectral Brightness N Comments
  (2000.0) (2000.0) Type (d) Type Range    

SV And
00:04:20 +40:06:36 Mira 316.21 M5e-M7e 7.7-14.3 2  
T And 00:22:23 +26:59:46 Mira 280.76 M4e-M7.5e 7.7-14.5 2  
R And 00:24:02 +38:34:39 Mira 409.33 S3,5e-S8,8e 5.8-14.9 1  
Y Cep 00:38:22 +80:21:24 Mira 332.57 M5e-M8.2e 8.1-16.0 1  
U Psc 01:22:58 +12:41:54 Mira 173.10 M4e 10.3-14.9 1  
R Psc 01:30:38 +02:52:55 Mira 344.50 M3e-M6e 7.0-14.8 5  
Y And 01:39:37 +39:20:37 Mira 220.53 M3e-M4.5e 8.2-15.1 5  
o Cet 02:19:21 -02:58:28 Mira 331.96 M5e-M9e 2.0-10.1 3  
R Cet 02:26:02 -00:10:42 Mira 166.24 M4e-M9 7.2-14.0 7  
U Cet 02:33:44 -13:08:54 Mira 234.76 M2e-M6e 6.8-13.4 1  
R Tri 02:37:02 +34:15:54 Mira 266.9 M4IIIe-M8e 5.4-12.6 3  
U Ari 03:11:03 +14:47:58 Mira 371.13 M4e-M9.5e 7.2-15.2 5  
SS Cep 03:49:30 +80:19:20 SRb 90.0 M5III 8.0- 9.1 3  
R Tau 04:28:18 +10:09:44 Mira 320.90 M5e-M9e 7.6-15.8 4  
V Tau 04:52:02 +17:32:18 Mira 168.7 M0e-M4.5e 8.5-14.6 4  
R Aur 05:17:18 +53:35:11 Mira 457.51 M6.5e-M9.5e 6.7-13.9 3  
W Aur 05:26:55 +36:54:11 Mira 274.27 M3e-M8e 8.0-15.3 2  
RU Aur 05:40:08 +37:38:12 Mira 466.47 M7e-M9e 9.0-16.0 3  
S Cam 05:41:02 +68:47:55 SRa 327.26 C7,3e(R8e) 7.7-11.6 5  
$\alpha$ Ori 05:55:10 +07:24:25 SRc   M1 0.50 1 non-LPV
U Ori 05:55:49 +20:10:31 Mira 368.3 M6e-M9.5e 4.8-13.0 4  
$\delta $ Aur 05:59:31 +54:17:11     K0 3.71 1 non-LPV
X Aur 06:12:13 +50:13:41 Mira 162.79 M3e-M7e 8.0-13.6 2  
$\mu $ Gem 06:22:57 +22:30:54 Lb   M3 2.97 1 non-LPV
SU Cam 06:38:12 +73:55:00 Mira 285.03 M5 8.9-12.6 8 circum.
X Gem 06:47:07 +30:16:35 Mira 264.16 M5e-M8e(Tc:) 7.5-13.8 3  
X Mon 06:57:12 -09:03:51 SRa 155.80 M1eIII-M6ep 6.8-10.2 1  
R Gem 07:07:21 +22:42:13 Mira 369.91 S2.9e-S8.9e 6.0-14.0 7  
R CMi 07:08:43 +10:01:27 Mira 337.78 C7,1Je(CSep) 7.25-11.6 1  
S CMi 07:32:43 +08:19:07 Mira 332.94 M6e-M8e 6.6-13.2 5  
$\upsilon$ Gem 07:35:55 +26:53:50     M0 4.06 1 non-LPV
81 Gem 07:46:08 +18:30:39     K4 4.87 1 non-LPV
R Cnc 08:16:34 +11:43:35 Mira 361.6 M6e-M9e 6.07-11.8 5  
X UMa 08:40:49 +50:08:11 Mira 249.04 M3e-M4e 8.1-14.8 4  
HD 76830 08:59:11 +18:08:09     M4 6.38 1 non-LPV
UZ Hya 09:16:45 -04:36:24 Mira 260.95 M4e 8.8-14.5 5  
R Leo 09:47:33 +11:25:46 Mira 309.95 M6e-M8IIIe 4.4-11.3 3  
S LMi 09:53:43 +34:55:32 Mira 233.83 M2.0e-M8.2e 7.5-14.3 2  
V Leo 10:00:02 +21:15:40 Mira 273.35 M5e 8.4-14.6 4  
R UMa 10:44:39 +68:46:33 Mira 301.62 M3e-M9e 6.5-13.7 4  
RU UMa 11:41:40 +38:28:30 Mira 252.46 M3e-M5e 8.1-15.0 4  
Y Vir 12:33:52 -04:25:18 Mira 218.43 M2e-M5e 8.3-15.0 4  
R Vir 12:38:30 +06:59:18 Mira 145.63 M3.5IIIe-M8 6.1-12.1 2  
RS UMa 12:38:57 +58:29:03 Mira 258.97 M4e-M6e 8.3-14.9 4  
S UMa 12:43:57 +61:05:36 Mira 225.87 S0,9e-S5,9e 7.1-12.7 2  
U Vir 12:51:06 +05:33:12 Mira 206.64 M2e-M8e: 7.4-13.5 2  
V UMi 13:38:41 +74:18:37 SRb 72.0 M5IIIab 7.2- 9.1 5  
SY Vir 13:58:38 -04:34:35 Mira 236.65 M6: 9.6-13.4 1  
HD 123657 14:07:56 +43:51:18 Lb   M4.5III 5.25 1 non-LPV
$\alpha$ Boo 14:15:38 +19:11:06     K1.5III -0.04 1 r.v. st
R Boo 14:37:12 +26:44:12 Mira 223.4 M3e-M8e 6.2-13.1 5  
Y Lib 15:11:41 -06:00:43 Mira 275.70 M5e-M8.2e 7.6-14.7 4  
RT Boo 15:17:15 +36:21:34 Mira 273.86 M6.5e-M8e 8.3-13.9 2  
S Ser 15:21:40 +14:18:52 Mira 371.84 M5e-M6e 7.0-14.1 1  
S UMi 15:29:35 +78:38:00 Mira 331.0 M6e-M9e 7.5-13.2 10 circum.
ST Her 15:50:47 +48:29:00 SRb 148.0 M6 8.8-10.3 1  
RU Her 16:10:15 +25:04:14 Mira 484.83 M6e-M9 6.8-14.3 7  
SS Oph 16:57:52 -02:45:42 Mira 180.64 M5e 7.8-14.5 1  
RV Her 17:00:35 +31:13:22 Mira 205.23 M2e 9.0-15.5 1  
SY Her 17:01:29 +22:28:40 Mira 116.91 M1e-M6e 8.4-14.0 1  
Z Oph 17:19:32 +01:30:52 Mira 348.7 K3ep-M7.5 7.6-14.0 10  
RS Her 17:21:42 +22:55:16 Mira 219.70 M4e-M8 7.0-13.0 3  
RU Oph 17:32:53 +09:25:24 Mira 202.29 M3e-M5e 8.6-14.2 1  
$\beta$ Oph 17:43:27 +04:34:03     K2III 2.77 6 r.v. st
T Her 18:09:06 +31:01:16 Mira 164.98 M2,5e-M8e 6.8-13.7 1  
RY Oph 18:16:37 +03:41:34 Mira 150.41 M3e-M6 7.4-13.8 1  
RT Dra 18:19:26 +72:40:50 Mira 279.41 M5 9.6-13.8 14 circum.
SV Her 18:26:23 +25:01:35 Mira 238.99 M5e 9.1-15.1 1  
X Oph 18:38:21 +08:50:01 Mira 328.85 M5e-M9e 5.9- 9.2 4  
WZ Lyr 19:02:15 +47:12:56 Mira 376.64 M9e 10.6-15.0 2  
RU Lyr 19:12:21 +41:18:12 Mira 371.84 M6e:-M8e 9.5-15.9 1  
W Aql 19:15:23 -07:02:50 Mira 490.43 S3,9e-S6,9e 7.3-14.3 1  
RT Cyg 19:43:38 +48:46:41 Mira 190.28 M2e-M8.8eIb 6.0-13.1 7  
$\gamma$ Aql 19:46:14 +10:36:43     K3II 2.72 3 r.v. st
$\chi$ Cyg 19:50:34 +32:54:53 Mira 408.05 S6,2e-S10,4e 3.3-14.2 6  



 

 
Table 1: continued.

Name
Right Asc. Declination Variability Period Spectral Brightness N Comments
  (2000.0) (2000.0) Type (d) Type Range    

Z Cyg
20:01:27 +50:02:34 Mira 263.69 M5e-M9e 7.1-14.7 1  
S Aql 20:11:37 +15:37:13 SRa 146.45 M3e-M5.5e 8.9-12.8 1  
Z Aql 20:15:11 -06:09:04 Mira 129.22 M3e 8.2-14.8 1  
WX Cyg 20:18:34 +37:26:54 Mira 410.45 C8,2JLi(N3e) 8.8-13.2 2  
T Cep 21:09:32 +68:29:28 Mira 388.14 M5.5e-M8.8e 5.2-11.3 6  
RR Aqr 21:15:01 -02:53:43 Mira 182.45 M2e-M4e 9.1-14.4 1  
X Peg 21:21:00 +14:27:00 Mira 201.20 M2e-M5e 8.8-14.4 1  
SW Peg 21:22:29 +21:59:45 Mira 396.33 M4e 8.0-14.0 2  
AX Cep 21:26:52 +70:13:18 Mira 395.0 C(N) 9.5-13.0 11 circum.
S Cep 21:35:13 +78:37:28 Mira 486.84 C7,4e(N8e) 7.4-12.9 12 circum.
RV Peg 22:25:38 +30:28:22 Mira 396.80 M6e 9.0-15.5 1  
AR Cep 22:51:33 +85:02:47 SRb   M4III 7.0-7.9 2 non-LPV
R Peg 23:06:39 +10:32:35 Mira 378.1 M6e-M9e 6.9-13.8 4  
W Peg 23:19:50 +26:16:44 Mira 345.5 M6e-M8e 7.6-13.0 5  
S Peg 23:20:33 +08:55:08 Mira 319.22 M5e-M8.5e 6.9-13.8 3  
RY Cep 23:21:14 +78:57:31 Mira 149.06 Ke-M0e 8.6-13.6 9 circum.
ST And 23:38:45 +35:46:17 SRa 328.34 C4,3e-C6,4e 7.7-11.8 5  
R Cas 23:58:24 +51:23:18 Mira 430.46 M6e-M10e 4.7-13.5 4  


2.3 The observations

A total of 27 observing nights on ELODIE were allocated between 1998, August and 2000, August (more or less one night per month). Approximatively one third of the total observing time was lost mainly because of bad atmospheric conditions, causing interruptions in the phase coverage. About 15-20 stars were observed during each clear night, with typical exposure times of about 25 min yielding a S/N ratio per resolution element at 500 nm up to 150 for the brightest stars. For the faintest and reddest stars, sometimes only the reddest orders recorded a usable signal. But the power of a correlation technique is precisely that it does not require high S/N spectra to deliver useful CCFs (see e.g., Queloz 1995). As indicated in Sect. 2.1, the CCF is computed using orders having an average S/Nratio of at least 2.0.

The log of observations is presented in Table 2: the first and second columns list the civil date and the corresponding Julian date at midnight. The third column gives the code number of the night: each observing night will be subsequently referred to by this number. Only the nights during which at least one star was observed are reported in Table 2.

A total of 315 spectra were collected, i.e. 3-4 spectra per star on average. Some (circumpolar) stars were observed as often as 12 times (SCep), and the majority of variable stars were observed 2-3 times.


next previous
Up: Envelope tomography of long-period stars

Copyright ESO 2001