next previous
Up: Physical parameters of Bootis stars


Subsections

2 Observations and data reduction

The observations were performed in May 1998 at the Complejo Astronómico el Leoncito (CASLEO) using the 2.15-m telescope equipped with a REOSC echelle spectrograph[*] and a Tek-1024 CCD. A grating with 1200 lines mm-1 was used as a cross disperser. A resolving power of 26000 was achieved. Two wavelength ranges were observed (3830-4570 Å; 4520-5230 Å).

The spectra were reduced using the context echelle of the MIDAS reduction package. A typical session of echelle reduction comprises the following steps: bias subtraction, spatial positioning of the spectral orders, flatfield correction (several master flatfield exposures were taken every night), background subtraction, order extraction and wavelength calibration. The wavelength calibration of the stellar spectra was done with thorium-argon comparison spectra. Polynomial calibrations of wavelength as a function of pixel number were calculated for every night. The lower sensitivity at the edges of the orders typical of echelle spectra (ripple effect) was corrected by using Procyon as standard star. A blaze function was derived for each order.

The reliability of the measured equivalent widths depends to a great extent on the accuracy of the continuum placement: an improper placement of the continuum level will lead to systematic errors which can misrepresent the data. Most $\lambda $ Bootis stars are characterized as having broad and often shallow absorption line profiles. In this case, the continuum placement cannot be set by simply connecting the highest points in the observed spectrum, which would produce an underestimation of the equivalent widths. We solved this problem by defining the "true'' continuum level as that of a synthetic spectrum of physical parameters ( $T_{\rm eff}$, $\log\,g$, [M/H], $v \sin i$) similar to those of the observed object. As a first approach, effective temperatures and surface gravities were derived using Moon & Dworetsky (1985). Rotational velocities were estimated using the method described in Sect. 3 where a pseudo-continuum was defined by connecting the highest points in the line profile: the small influence of the continuum level on the method used to calculate rotational velocities permits this approximation. Also, a value of $\rm [M/H] = -1.0$ was used for all the stars, which is justified by the results from our detailed abundance analysis. The normalized spectra were then derived by dividing the extracted spectra by this continuum level. Line identification was performed with the help of Moore et al. (1966).

To have an estimation of the measurements errors in equivalent widths, the standard star Procyon ($\alpha$ CMi, HR 2943) was observed and the spectra compared to the spectrum of the Atlas of Procyon (Griffin & Griffin 1979). It can be seen in Table 1 how the equivalent widths measured in the observed spectra are only slightly larger than those measured in the Atlas. We also compared the equivalent widths of spectral lines present in the overlapping region between spectral orders finding no systematic trend. The list of observed objects is given in Table 2.


 

 
Table 1: Comparison between the equivalent widths measured in the observed spectra of Procyon and in the Atlas (Griffin & Griffin 1979). The relative error is defined as (EW(observed) - EW(atlas))/EW(atlas).
Observing Relative Number
date error of lines
08/05/1998 $0.05 \pm 0.14$ 12
09/05/1998 $0.06 \pm 0.08$ 9
10/05/1998 $0.02 \pm 0.12$ 11
11/05/1998 $0.04 \pm 0.15$ 11
12/05/1998 $0.02 \pm 0.06$ 20
13/05/1998 $0.07 \pm 0.11$ 17



 

 
Table 2: Target list. Spectral types (excluding HD 184190 for which SIMBAD was used) and visual magnitudes are taken from Paunzen (2000) and SIMBAD, respectively. Surface gravities derived from HIPPARCOS parallaxes are labeled with ($\ast $). Adopted values (in boldface) are the average of Balmer lines and Moon & Dworetsky (1985) ( $T_{\rm eff}$), HIPPARCOS and Moon & Dworetsky (1985) ($\log\,g$) and the weighted mean of the different measurements ($v \sin i$). Steps of 50 ${\rm K}$  and 0.1 dex have been assumed.

Identification
Spectral. V mag. Region $T_{\rm eff}$ $\log\,g$ $v \sin i$
  type   (Å) This work This work This work
        /Other sources /Other sources /Other sources

HD 68758
A1IVp 6.52 3830-4570     $291 \pm 21$ (2)
      3830-4570 8100(H$_\gamma$),8187(H$_\delta$)   $299 \pm 23$ (3)
      3830-4570 8050(H$_\delta$)   $305 \pm 25$ (6)
      3830-4570 8066(H$_\delta$)   $297 \pm 41$ (3)
      4520-5230     285 (1)
        /8300(4) /3.7($\ast $),3.65(4)  
        8150 3.7 299
HD 75654 hF0mA5V 6.38 3830-4570 7256(H$_\gamma$),7214(H$_\delta$)   $45 \pm 4$ (16)
      4520-5230     $43 \pm 5$ (13)
        /7275(4),7200(10) /3.85($\ast $),3.8(4),3.8(10) /45(10)
        7250 3.8 44
HD 81290 kA5hF3mA5V 8.89 3830-4570 6775(H$_\gamma$),6862(H$_\delta$)   $53 \pm 6$ (10)
      3830-4570     $57 \pm 8$ (7)
      4520-5230 6800(H$_\beta$)   $56 \pm 8$ (16)
      4520-5230 6750(H$_\beta$)   $57 \pm 8$ (18)
        /6750(4),6760(6) /3.5(4)  
        6800 3.5 56
HD 83041 kA2hF2mA2V 8.80 3830-4570     $105 \pm 15$ (7)
      3830-4570     $106 \pm 17$ (4)
      3830-4570 6800(H$_\delta$)   $121 \pm 33$ (4)
      4520-5230 7050(H$_\beta$)   $77 \pm 10$ (9)
      4520-5230 6975(H$_\beta$)   $83 \pm 14$ (6)
      4520-5230 6843(H$_\beta$)   $78 \pm 10$ (6)
        /6850(4),6900(6) /3.6(4),3.3(6)  
        6900 3.6 95
HD 107233 kA1hF0mA1Va A1V 7.37 3830-4570 7000(H$_\gamma$),6900(H$_\delta$)   $112 \pm 11$ (24)
      3830-4570 6900(H$_\gamma$),6950(H$_\delta$)   $110 \pm 12$ (17)
        /7225(4),7244(5),7200(2) /4.2($\ast $), 4.05(4), 4.1(2)  
        7000 4.1 111
HD 109738 kA1hA9mA1V 8.29 3830-4570 7437(H$_\gamma$),7350(H$_\delta$)   $185 \pm 18$ (10)
      3830-4570 7425(H$_\delta$)   $164 \pm 5$ (3)
        7500(H$_\beta$)   $170 \pm 14$ (2)
        7500(H$_\beta$)   $167 \pm 12$ (6)
        /7575(4),7603(6) /3.9(4),3.8(6)  
        7450 3.9 166
111005 hF0mA3V 7.97 3830-4570 7250(H$_\gamma$),7330(H$_\delta$)   $140 \pm 15$ (12)
      3830-4570 7415(H$_\gamma$),7380(H$_\delta$)   $131 \pm 12$ (10)
      3830-4570 7525(H$_\gamma$),7375(H$_\delta$)   $136 \pm 12$ (8)
      4520-5230 7500(H$_\beta$)   $143 \pm 13$ (5)
      4520-5230 7500(H$_\beta$)   $142 \pm 11$ (6)
          / 3.8($\ast $)  
        7400 3.8 138
HD 142703 kA1hF0mA1Va 6.13 3830-4570 7172(H$_\gamma$),7000(H$_\delta$)   $120 \pm 13$ (16)
      4520-5230     $110 \pm 20$ (12)
        /7200(4), 7400(2),7294(6) /4.1($\ast $),4.1(2),3.95(4) /100(10),95(12)
        7100 4.0 117
HD 142994 A3Va 7.18 3830-4570 6900(H$_\gamma$),6962(H$_\delta$)   $202 \pm 14$ (10)
      3830-4570 7035(H$_\gamma$),6803(H$_\delta$)   $212 \pm 14$ (9)
      4520-5230     $204 \pm 10$ (9)
      4520-5230     $207 \pm 17$ (10)
        /7079(1),7244(2),7000(4) /3.5(1,2,3),3.4(4) /220(1),195(3)
        6950 3.4 206



 
Table 2: continued.

Identification
Spectral. V mag. Region $T_{\rm eff}$ $\log\,g$ $v \sin i$
  type   (Å) This work This work This work
        /Other sources /Other sources /Other sources

HD 156954
hF1mA5V 7.69 3830-4570 6775(H$_\gamma$),7112(H$_\delta$)   $47 \pm 7$ (20)
      3830-4570 7000(H$_\gamma$),   $53 \pm 9$ (21)
      4520-5230 6937(H$_\beta$)   $56 \pm 9$ (32)
        /7050(4),7079(6) /4.2($\ast $),4.0(4)  
        7000 4.1 51
HD 168740 hA7mA2V 6.13 3830-4570 7875(H$_\gamma$),7650(H$_\delta$)   $168 \pm 16$ (12)
      4520-5230 7575(H$_\beta$)   $158 \pm 14$ (10)
        /7650(4),7700(10) /4.15($\ast $), 3.9(4,12) /147 (10)
        7700 4.0 162
HD 184190 A8 9.74 4520-5230 7200(H$_\beta$)   $19 \pm 3$ (55)
        7250(4) 4.0(4)  
        7250 4.0 19
HD 193281 hA3mA2Vb 6.30 3830-4570 8000(H$_\gamma$),8000(H$_\delta$)   $101 \pm 7$ (5)
      4520-5230     $103 \pm 9$ (7)
      4530-5230     $104 \pm 5$ (6)
        /8100(4), 8100(10), 8080(13) /3.5(4),3.6(10),3.6(13) /95(10), 83(13)
        8050 K 3.5 103
HD 204041 A1Vb 6.46 3830-4570 7857(H$_\gamma$),8041(H$_\delta$)   $68 \pm 5$ (8)
      3830-4570 7950(H$_\gamma$),8118(H$_\delta$)   $69 \pm 7$ (10)
      4520-5230 7950(H$_\delta$)   $70 \pm 5$ (7)
        /8100(4),8128(6),8100(7) /4.0($\ast $),3.95(4),4.03(7) /65(7),68(8),70(11)
        8000 4.0 69
HD 210111 kA2hA7mA2Vas   3830-4570     $57 \pm 6$ (10)
      3830-4570     $54 \pm 9$ (9)
      4520-5230 7415(H$_\beta$)   $60 \pm 11$ (8)
        /7762(2),7603(5),7450(4) /3.9($\ast $),3.9(2),3.8(4),3.75(8) /55(8),60(11)
        7450 3.8 57


References: (1) Paunzen et al. (1998a); (2) Iliev & Barzova (1995); (3) Bohlender et al. (1999); (4) Moon & Dworetsky (1985); (5) Paunzen (1997); (6) Paunzen et al. (1998b); (7) Stürenburg (1993); (8) Holweger & Rentzsch-Holm (1995); (9) North et al. (1994); (10) Paunzen et al. (1999a); (11) Gray & Corbally (1993); (12) Faraggiana & Bonifacio (1999); (13) Holweger et al. (1999).


2.1 Binarity among the observed stars

Five targets of our sample show a composite spectra and no attempt to derive their abundance pattern was done (Fig. 1). All of them are identified as members of binary systems:


  \begin{figure}
\par\includegraphics[height=20cm,width=15.5cm,clip]{fig1_ms10543.ps}\end{figure} Figure 1: Observed stars with composite spectra.


next previous
Up: Physical parameters of Bootis stars

Copyright ESO 2001