next previous
Up: CCD photometry and astrometry catalogue


  
5 Presentation of standard photometry data

Not all our nights were of photometric quality. The results presented in Table 4 only concern those observations that were acquired in "reasonable" or good photometric conditions. This comprises standard V magnitudes and (V-I) colour indices for the components of 203 Hipparcos double stars, one apparently double (the triple system ADS 6223) and 9 astrometric standard stars. Also presented are the magnitude differences, $\Delta\,V$ and $\Delta\,(V-I)$, between the components A and B of each system in the Cousins standard system. The first columns list the identifier (same as before), the Julian date, and the previously cited data along with standard deviations on all parameters. In the case that only one colour was obtained, one must note that the listed component magnitudes and differences, $\Delta\,V$ or $\Delta$i, are less accurate: in that case a default value of 0.7 for $(V-I)_{\rm A}$ and $(V-I)_{\rm B}$ was adopted in the reduction (as done in the standard Hipparcos double star processing). Such data are e.g. presented separately in Table 5 (filter I only). These results will be discussed and illustrated in Sect. 6.4.

 

 
Table 4: CCD VI photometry for 203 Hipparcos and 9 astrometric standard double stars.
Identifier Jul. Dat. nV $V_{\rm A}$ $\sigma_{V_{\rm A}}$ $V_{\rm B}$ $\sigma_{V_{\rm B}}$ nI $(V-I)_{\rm A}$ $\sigma_{(V-I)_{\rm A}}$ $(V-I)_{\rm B}$ $\sigma_{(V-I)_{\rm B}}$ $\Delta V$ $\Delta$(V-I)
  2440000+   (mag) (mag) (mag) (mag)   (mag) (mag) (mag) (mag) (mag) (mag)
000045 8852.8460 7 9.755 .020 11.791 .022 7 .78 .03 1.32 .03 2.036 .55
000169 8851.8217 3 9.523 .020 10.885 .020 3 1.62 .03 1.96 .03 1.362 .34
000924 8849.8117 6 9.349 .060 11.150 .060 0 - - - - 1.801 -
000924 8850.8464 6 9.155 .020 11.063 .020 7 .79 .03 1.29 .03 1.907 .50
001186 8852.8973 3 10.190 .021 11.351 .025 1 .68 .03 .75 .03 1.162 .07
002438 8852.9290 5 10.247 .020 13.225 .020 14 .56 .03 1.13 .03 2.978 .57
002438 9668.5774 2 10.244 .025 13.188 .025 0 - - - - 2.944 -
002449 9668.5911 2 10.362 .051 10.839 .051 2 .72 .05 .63 .05 .477 -.09
002663 9670.5833 10 6.655 .025 8.590 .025 10 .65 .04 .92 .04 1.935 .27
003200 8851.8605 4 10.076 .020 11.357 .020 4 .63 .03 .73 .03 1.280 .10
003205 8851.8674 3 10.011 .020 10.223 .020 1 .52 .03 .46 .03 .212 -.06
003397 8848.8919 11 6.970 .030 10.573 .031 12 .51 .04 .18 .05 3.603 -.34
003827 8850.8527 2 9.640 .020 10.052 .020 3 .65 .03 .68 .03 .412 .03
004404 8850.8689 13 9.057 .020 12.388 .022 14 .59 .03 1.12 .03 3.332 .53
004764 9346.4528 6 9.698 .044 11.043 .134 3 .82 .06 1.04 .18 1.344 .23
005413 9346.4701 13 9.401 .020 11.657 .020 13 .22 .03 .97 .03 2.256 .75
005992 9670.6241 6 6.461 .025 8.314 .026 7 .02 .04 .46 .04 1.853 .44
006132 8851.8921 11 10.316 .020 12.270 .020 12 .69 .03 .89 .03 1.954 .20
006707 8941.6132 11 8.380 .019 9.762 .019 9 .44 .02 .56 .02 1.382 .12
007290 8851.9007 7 9.918 .020 12.998 .025 4 1.12 .03 2.52 .03 3.081 1.40
008054 8939.6481 7 9.902 .036 11.363 .036 4 .71 .04 .87 .04 1.461 .15
008236 8850.8941 4 9.952 .020 12.743 .020 4 .63 .03 1.00 .03 2.792 .37
008957 9347.4322 3 7.157 .017 7.249 .017 3 .35 .02 .40 .02 .093 .05
008965 9347.4362 3 8.825 .025 10.693 .100 3 .05 .04 .59 .17 1.868 .54
009258 9670.6556 6 7.194 .025 7.628 .026 2 .47 .04 .64 .04 .434 .17
009344 8850.9127 3 9.779 .020 9.987 .020 3 .53 .03 .55 .03 .208 .02
009651 8850.9180 3 9.960 .020 10.181 .020 3 .66 .03 .73 .03 .221 .07
010579 9668.6298 5 9.432 .020 9.905 .020 4 .64 .03 .73 .03 .473 .09
010683 8939.6568 4 8.130 .020 8.943 .020 3 .57 .03 .61 .03 .813 .04
010722 9347.4501 7 8.395 .025 10.518 .129 6 1.02 .03 .32 .17 2.123 -.70
010983 9669.6681 14 7.503 .026 10.669 .043 18 1.01 .04 .55 .06 3.166 -.45
011219 9668.7130 10 8.864 .020 10.129 .020 0 - - - - 1.265 -
011257 9668.6486 4 9.124 .020 9.357 .020 5 .57 .03 .58 .03 .233 .02
011945 9348.4323 3 7.877 .017 7.980 .017 3 1.07 .02 1.05 .02 .103 -.02
012105 9668.7052 6 7.055 .021 8.922 .021 4 .95 .03 .24 .03 1.867 -.72
012708 9347.4560 3 6.998 .020 7.270 .021 5 -.09 .03 -.04 .03 .272 .04
012752 8939.7298 4 9.781 .024 10.891 .031 8 .75 .03 .80 .04 1.110 .05
013199 9348.4429 6 9.470 .017 9.831 .017 3 .52 .02 .47 .02 .361 -.05
013243 9345.4744 5 9.653 .021 9.773 .021 6 .78 .03 .84 .03 .120 .06
013815 9347.4836 13 8.250 .019 10.645 .073 14 -.03 .03 -.01 .09 2.395 .03
013866 9668.6967 6 10.013 .020 11.689 .020 4 .52 .03 .72 .03 1.676 .20
014584 9346.4783 12 9.553 .020 10.659 .020 2 .92 .03 .90 .03 1.106 -.02
015257 9349.4358 11 8.433 .018 10.689 .048 12 1.03 .03 1.09 .17 2.256 .06
015356 9346.5003 11 9.029 .020 11.205 .021 11 .40 .03 .54 .03 2.176 .14
015869 9348.4497 15 7.070 .017 8.963 .022 15 .18 .02 .23 .03 1.893 .05
015883 9347.4997 5 7.308 .018 8.848 .024 5 .25 .02 .62 .03 1.540 .36
016080 8941.7033 7 8.091 .019 9.853 .019 5 .53 .03 .79 .03 1.762 .26
017260 9347.5039 6 7.925 .026 8.871 .047 5 .30 .04 .69 .07 .946 .39
017288 9670.7485 5 7.815 .025 10.377 .030 0 - - - - 2.562 -
017328 9349.4562 4 6.662 .017 8.042 .021 4 -.03 .02 .18 .03 1.381 .21



 
Table 4: continued.
Identifier Jul. Dat. nV $V_{\rm A}$ $\sigma_{V_{\rm A}}$ $V_{\rm B}$ $\sigma_{V_{\rm B}}$ nI $(V-I)_{\rm A}$ $\sigma_{(V-I)_{\rm A}}$ $(V-I)_{\rm B}$ $\sigma_{(V-I)_{\rm B}}$ $\Delta V$ $\Delta$(V-I)
  2440000+   (mag) (mag) (mag) (mag)   (mag) (mag) (mag) (mag) (mag) (mag)
017397 8941.7226 13 9.532 .021 12.091 .021 23 .24 .03 .57 .03 2.559 .33
017436 9348.4574 11 6.549 .017 9.527 .019 0 - - - - 2.978 -
017464 9349.4610 10 6.373 .017 9.465 .017 0 - - - - 3.092 -
018068 9346.5063 7 8.000 .020 9.987 .021 0 - - - - 1.987 -
018429 9345.5112 3 10.431 .021 10.495 .021 3 1.04 .03 1.07 .03 .063 .03
018883 9349.4728 3 8.321 .017 8.666 .017 3 .56 .02 .42 .02 .345 -.14
019684 9345.5212 3 8.194 .021 8.275 .021 0 - - - - .081 -
019892 9668.7629 10 7.387 .020 9.181 .020 5 -.01 .03 .52 .03 1.795 .52
019951 9345.5550 3 9.616 .020 10.014 .020 6 .77 .03 .66 .03 .397 -.12
020020 9347.5166 8 5.987 .018 7.685 .019 7 -.26 .02 -.12 .03 1.698 .15
020020 9669.7071 10 6.085 .029 7.808 .029 6 -.13 .04 .07 .04 1.723 .20
020374 9348.5275 8 7.657 .017 10.698 .043 9 1.09 .02 .89 .09 3.042 -.20
020735 9348.5139 4 7.053 .018 8.216 .021 7 -.02 .02 .23 .03 1.163 .24
020766 9349.4779 10 7.844 .017 10.322 .039 11 1.04 .03 .66 .10 2.478 -.37
020943 8940.7505 11 10.255 .050 12.218 .051 0 - - - - 1.963 -
020956 8939.7424 10 10.363 .022 12.254 .023 0 - - - - 1.891 -
021213 9348.5338 4 7.848 .017 9.615 .018 5 .18 .02 .45 .03 1.767 .27
021577 9348.4838 4 7.181 .017 9.047 .018 7 .33 .02 .49 .03 1.866 .16
021849 9348.5500 11 7.474 .017 9.976 .018 11 .22 .02 .61 .02 2.502 .39
022249 9349.4970 10 7.328 .017 9.990 .021 10 .53 .02 1.10 .03 2.662 .57
022463 8941.7542 3 8.958 .015 9.763 .016 2 .51 .02 .64 .02 .805 .13
022874 8940.7584 3 10.039 .053 10.312 .053 3 .53 .07 .57 .07 .273 .04
023196 9670.7778 5 7.194 .027 9.026 .027 7 .43 .04 .60 .04 1.832 .17
023480 8941.7664 5 8.008 .018 9.457 .040 5 .26 .02 .26 .04 1.449 -.01
023493 9668.8104 1 7.094 .020 8.629 .020 7 -.11 .03 .17 .03 1.535 .28
023644 9349.5198 3 8.912 .017 9.472 .018 3 .70 .03 .96 .03 .560 .27
024039 8939.7794 18 9.525 .021 14.402 .031 17 .78 .03 2.20 .04 4.877 1.42
024203 9669.7795 7 6.245 .029 7.446 .029 9 1.00 .04 .11 .04 1.201 -.89
024366 8941.7834 11 9.369 .015 11.081 .016 7 .73 .02 .73 .02 1.712 .00
024429 9349.5306 6 10.112 .018 10.070 .018 3 .60 .03 .39 .03 -.042 -.21
024717 9346.5535 8 9.171 .020 10.916 .025 8 .94 .03 .71 .04 1.746 -.23
025231 9349.5469 7 7.896 .021 9.460 .051 8 .49 .04 1.25 .09 1.564 .76
025482 9349.5348 4 6.565 .018 7.120 .019 3 .24 .03 .74 .03 .555 .50
026401 8941.7900 5 9.650 .017 10.538 .017 5 .75 .02 .93 .02 .888 .18
027174 9349.5682 5 8.558 .017 10.234 .024 6 .53 .02 .87 .03 1.676 .34
027386 9670.8134 3 6.059 .028 6.095 .028 4 .38 .05 .26 .05 .036 -.13
027424 8940.7983 2 9.163 .051 9.306 .051 4 -.14 .08 -.09 .08 .143 .05
027427 9669.7865 12 7.311 .026 9.912 .026 11 -.08 .04 .48 .04 2.601 .56
027524 9346.5577 4 9.364 .020 9.745 .020 4 .75 .03 .71 .03 .382 -.04
027526 9346.5772 4 10.803 .020 10.997 .020 4 .53 .03 .88 .03 .194 .35
027827 9349.5637 4 8.612 .019 9.864 .031 4 -.01 .03 .40 .04 1.252 .41
027922 9347.5607 9 7.542 .017 10.648 .017 9 .76 .02 1.66 .02 3.106 .90
027962 9670.8204 13 6.906 .027 9.178 .027 13 -.06 .04 .39 .04 2.272 .45
028165 9349.5824 3 8.351 .018 8.857 .019 6 .29 .03 .54 .03 .506 .25
028275 9347.5670 3 8.625 .017 8.746 .017 3 .33 .02 .37 .02 .121 .04
028383 9346.5898 4 9.516 .021 10.506 .024 4 .36 .04 1.84 .05 .990 1.48
028819 9346.5943 5 9.722 .021 11.362 .039 5 .83 .03 1.03 .06 1.640 .19
028852 9348.5975 4 8.257 .017 8.465 .017 3 .44 .02 .46 .02 .208 .02
029622 8939.8235 1 9.197 .020 10.326 .020 2 .73 .03 .70 .03 1.129 -.03
029811 9347.5776 5 7.069 .018 8.383 .028 5 .50 .03 .40 .04 1.314 -.09



 
Table 4: continued.
Identifier Jul. Dat. nV $V_{\rm A}$ $\sigma_{V_{\rm A}}$ $V_{\rm B}$ $\sigma_{V_{\rm B}}$ nI $(V-I)_{\rm A}$ $\sigma_{(V-I)_{\rm A}}$ $(V-I)_{\rm B}$ $\sigma_{(V-I)_{\rm B}}$ $\Delta V$ $\Delta$(V-I)
  2440000+   (mag) (mag) (mag) (mag)   (mag) (mag) (mag) (mag) (mag) (mag)
030456 9349.6220 7 8.064 .017 9.801 .022 7 .41 .02 .46 .04 1.737 .05
030593 9348.6066 6 7.262 .017 9.039 .017 6 .15 .02 .39 .02 1.778 .25
030840 9349.6093 7 6.033 .028 7.448 .083 0 - - - - 1.415 -
030925 9347.5830 6 7.038 .017 8.597 .019 6 .07 .02 .04 .03 1.559 -.02
031042 8940.8325 11 8.969 .054 10.402 .054 11 .62 .07 .87 .07 1.433 .25
031126 9345.6288 9 10.743 .020 12.678 .020 9 1.79 .03 2.46 .03 1.935 .67
031539 9346.6124 16 9.335 .020 11.931 .020 17 1.03 .03 .73 .03 2.596 -.30
031634 9345.6382 9 9.679 .020 12.772 .024 9 1.94 .03 .98 .04 3.093 -.96
031634 9345.6382 9 9.695 .020 12.526 .029 9 1.80 .03 2.89 .04 2.831 1.09
031833 8941.8389 11 11.598 .017 13.039 .018 0 - - - - 1.441 -
032069 9347.5969 9 7.075 .017 9.183 .025 8 -.03 .02 .20 .04 2.108 .23
032111 9348.6281 11 8.021 .017 11.108 .056 11 .51 .02 1.53 .07 3.087 1.02
033177 8939.8370 10 9.569 .024 10.123 .024 10 .03 .03 .01 .03 .554 -.02
033487 9349.6266 4 9.716 .019 9.987 .021 3 .55 .03 .48 .03 .271 -.07
033499 9346.6570 4 10.649 .022 13.564 .027 0 - - - - 2.915 -
033770 9348.6349 14 7.432 .017 10.032 .018 15 -.09 .02 .46 .03 2.600 .55
033900 9346.6613 4 8.811 .020 9.174 .020 4 -.04 .03 .09 .03 .362 .13
033969 9349.6428 14 8.223 .017 10.709 .022 13 .06 .02 .55 .03 2.486 .49
034000 9349.6484 4 5.814 .020 6.801 .030 4 -.31 .03 .12 .03 .987 .42
034386 9347.6434 11 8.065 .017 10.717 .023 11 -.13 .02 .60 .04 2.652 .73
034586 9349.6618 3 8.704 .019 9.540 .022 4 .33 .03 .45 .03 .836 .12
034817 9347.6500 11 6.075 .017 8.155 .027 11 -.14 .02 .11 .04 2.080 .25
034898 9348.6523 7 7.873 .017 10.132 .017 7 -.05 .02 .29 .02 2.259 .34
034919 9347.6839 14 7.456 .017 11.343 .084 1 .01 .02 .82 .09 3.888 .80
035207 8940.8604 5 8.174 .052 10.006 .052 5 .15 .07 .47 .07 1.833 .33
035391 9347.6614 3 7.641 .017 7.873 .017 1 -.12 .02 -.14 .02 .232 -.02
035439 9347.6665 11 7.926 .017 10.689 .020 10 .49 .02 .87 .03 2.763 .38
035539 9348.6767 1 8.304 .017 9.080 .018 3 -.02 .02 -.05 .03 .777 -.03
035924 9346.6712 4 10.361 .020 10.379 .020 4 .78 .03 .79 .03 .017 .01
036013 9349.6694 11 9.572 .017 11.274 .020 11 -.14 .02 .20 .03 1.702 .34
036108 9346.6759 4 10.161 .024 11.355 .043 4 .65 .03 3.35 .05 1.194 2.70
036442 9348.6946 5 8.811 .018 10.991 .044 11 1.19 .03 .38 .10 2.180 -.81
038137 9346.6847 4 8.977 .020 10.121 .021 4 -.67 .03 -.29 .03 1.144 .38
039290 9346.6884 4 8.203 .020 9.324 .020 4 -.17 .03 .17 .03 1.121 .35
039498 9346.7030 7 9.323 .021 10.688 .034 7 .74 .03 .84 .07 1.365 .10
043422 9345.7281 3 9.669 .020 9.959 .020 6 1.58 .03 1.72 .03 .290 .14
043539 9348.7327 4 7.400 .018 9.164 .025 1 .04 .02 .31 .03 1.764 .27
043708 9345.7341 3 12.019 .020 15.948 .051 3 2.61 .03 3.48 .06 3.929 .87
043920 9348.7458 3 7.262 .017 7.387 .017 3 .42 .02 .42 .02 .125 .00
044429 9349.7512 3 8.503 .017 11.550 .018 4 .27 .02 .68 .02 3.046 .41
044776 9347.7340 14 7.867 .017 10.735 .017 13 .09 .02 .70 .02 2.869 .62
045582 9349.7403 3 9.249 .017 9.689 .017 3 .68 .02 .73 .02 .440 .06
077311 8851.5231 11 8.743 .020 11.805 .020 10 .10 .03 .58 .03 3.062 .48
078163 8851.5294 2 9.058 .020 10.320 .021 3 .71 .03 .90 .03 1.262 .19
079960 8851.5429 3 8.392 .020 9.397 .020 3 .07 .03 .37 .03 1.005 .29
080540 8851.5703 3 10.508 .020 10.736 .020 3 1.27 .03 1.24 .03 .228 -.03
083530 8850.5728 16 9.886 .020 12.452 .020 17 .55 .03 .67 .03 2.567 .12
085306 8849.5645 5 9.409 .025 11.565 .025 6 1.05 .04 .45 .04 2.155 -.60
085685 8849.5822 12 8.962 .025 10.073 .025 0 - - - - 1.111 -
086632 8852.5419 3 9.684 .020 9.918 .020 3 .66 .03 .69 .03 .234 .03



 
Table 4: continued.
Identifier Jul. Dat. nV $V_{\rm A}$ $\sigma_{V_{\rm A}}$ $V_{\rm B}$ $\sigma_{V_{\rm B}}$ nI $(V-I)_{\rm A}$ $\sigma_{(V-I)_{\rm A}}$ $(V-I)_{\rm B}$ $\sigma_{(V-I)_{\rm B}}$ $\Delta V$ $\Delta$(V-I)
  2440000+   (mag) (mag) (mag) (mag)   (mag) (mag) (mag) (mag) (mag) (mag)
087176 8851.6328 14 10.288 .020 12.570 .020 15 .75 .03 1.24 .03 2.282 .49
087535 8852.5554 3 9.394 .020 10.374 .020 3 .60 .03 .70 .03 .980 .11
087718 8851.6572 13 8.861 .020 11.452 .020 13 1.20 .03 .73 .03 2.591 -.47
087914 8852.5610 3 8.677 .020 9.280 .020 3 .85 .03 1.12 .03 .602 .27
088203 8852.5766 6 9.209 .020 11.339 .020 6 1.11 .03 .65 .03 2.130 -.45
090189 8852.6030 3 10.215 .020 10.367 .020 0 - - - - .152 -
090574 8851.6638 3 8.130 .020 8.222 .020 6 .66 .03 .67 .03 .092 .01
090787 8852.6200 3 9.873 .020 10.214 .020 5 .48 .03 .55 .03 .342 .08
091380 8851.6781 9 8.174 .020 10.360 .020 3 .00 .04 .03 .04 2.183 .03
091754 8852.6250 4 8.536 .020 9.728 .020 3 .55 .03 .68 .03 1.193 .14
092415 8850.6263 12 8.283 .020 12.070 .020 13 .52 .03 .73 .03 3.787 .21
092560 8849.6048 14 9.421 .025 11.863 .025 14 .63 .04 .67 .04 2.441 .04
093069 8852.6397 3 9.383 .020 9.911 .020 3 1.87 .03 2.07 .03 .528 .19
093521 8849.6164 4 11.183 .025 12.465 .025 4 1.36 .04 1.82 .04 1.283 .46
093970 8852.7062 3 10.341 .020 10.478 .020 3 .70 .03 .71 .03 .137 .01
094307 8849.6550 11 9.776 .035 13.027 .035 14 .70 .04 1.29 .04 3.252 .58
095097 8850.6447 2 9.961 .020 11.336 .020 2 .40 .03 .62 .03 1.375 .21
095493 8852.6464 3 10.602 .020 10.629 .020 3 .49 .03 .50 .03 .027 .01
096667 8848.6367 4 7.426 .025 7.490 .025 5 .33 .04 .35 .04 .064 .02
096915 8850.6513 3 9.458 .020 10.398 .020 3 .83 .03 1.25 .03 .940 .42
097301 8848.6694 12 7.696 .025 10.543 .026 4 .38 .04 .84 .04 2.847 .47
097570 8850.6669 7 8.349 .020 10.791 .020 7 .07 .03 .44 .03 2.442 .38
097593a 8849.6674 3 6.958 .025 11.474 .026 3 1.03 .04 .79 .04 4.516 -.24
097593a 8852.6607 1 6.932 .021 11.526 .021 0 - - - - 4.594 -
100182 8851.6862 13 10.152 .020 12.415 .020 14 .71 .03 1.32 .03 2.263 .61
101317 8852.7115 3 10.699 .020 10.756 .020 3 1.65 .03 1.67 .03 .057 .02
101653 8849.6992 4 8.999 .025 12.593 .026 20 1.17 .04 1.08 .04 3.594 -.09
102467 8852.7274 3 10.865 .020 13.726 .020 3 .66 .03 .69 .03 2.861 .03
102532a 8848.7300 3 4.264 .025 5.157 .025 4 1.04 .04 .60 .04 .893 -.44
103438 8852.7324 4 8.495 .020 8.983 .020 3 .59 .04 .86 .04 .488 .28
103475 8850.6935 4 9.640 .020 9.929 .020 1 .39 .03 .11 .03 .290 -.29
104370 8852.7473 3 10.264 .020 10.640 .020 3 .76 .03 .84 .03 .377 .08
104582 8850.7053 3 9.455 .020 10.930 .020 3 .43 .03 .50 .03 1.475 .06
105692 8851.7347 16 9.306 .020 11.165 .020 16 .73 .03 .81 .03 1.859 .08
105842 8851.7438 13 8.944 .020 11.817 .020 13 -.04 .03 .56 .03 2.873 .60
106411 8850.7115 4 10.135 .020 10.979 .020 4 .57 .03 .77 .03 .844 .20
106602 8850.7283 6 10.118 .020 11.327 .020 7 .87 .03 1.33 .03 1.209 .46
107206 8852.7558 3 10.660 .020 11.054 .020 3 .55 .03 .60 .03 .394 .05
107658 8850.7347 5 9.415 .020 10.915 .020 6 .65 .03 1.12 .03 1.500 .47
108801 8851.7629 8 8.215 .020 9.975 .020 8 .35 .03 .57 .03 1.760 .21
109183 8851.7685 4 8.957 .020 10.183 .020 3 .71 .03 .94 .03 1.226 .23
109840 8851.7854 6 8.634 .020 10.622 .028 6 .26 .03 .67 .04 1.989 .41
110654 8939.5889 4 9.692 .022 11.248 .022 4 .14 .04 .39 .04 1.556 .25
111231 8941.5226 4 9.490 .015 11.246 .015 4 .60 .02 .88 .02 1.757 .29
111687 8852.7945 10 9.630 .020 12.273 .020 10 .63 .03 .58 .03 2.643 -.05
113386 9670.5303 9 7.679 .025 9.286 .025 10 .75 .04 .81 .04 1.607 .06
113537 8850.8008 6 8.232 .020 9.506 .020 6 .57 .03 .68 .03 1.274 .11
114167 8848.8258 3 6.297 .025 7.100 .025 5 .55 .04 .61 .04 .803 .06
114378a 8850.7841 3 6.543 .020 10.275 .021 1 .60 .03 1.56 .03 3.731 .97
114857 8852.8049 14 8.791 .020 11.541 .021 14 .88 .03 .65 .03 2.750 -.24



 
Table 4: continued.
Identifier Jul. Dat. nV $V_{\rm A}$ $\sigma_{V_{\rm A}}$ $V_{\rm B}$ $\sigma_{V_{\rm B}}$ nI $(V-I)_{\rm A}$ $\sigma_{(V-I)_{\rm A}}$ $(V-I)_{\rm B}$ $\sigma_{(V-I)_{\rm B}}$ $\Delta V$ $\Delta$(V-I)
  2440000+   (mag) (mag) (mag) (mag)   (mag) (mag) (mag) (mag) (mag) (mag)
115863 8852.8251 6 8.872 .020 10.610 .021 3 .31 .03 .41 .03 1.738 .10
116068 8850.8134 5 9.311 .020 10.909 .020 6 .51 .03 .60 .03 1.599 .09
116737 8848.8578 4 6.628 .039 7.405 .039 4 .30 .05 .40 .05 .777 .10
116748 8852.8310 4 8.503 .020 9.710 .020 4 .77 .03 1.10 .03 1.206 .34
117081 9668.5409 6 9.697 .021 9.789 .021 4 .64 .03 .66 .03 .092 .02
117269 8941.5436 5 9.410 .016 9.468 .016 6 .47 .02 .47 .02 .057 -.01
117598 8941.5616 14 8.873 .016 11.375 .017 15 .60 .02 .82 .02 2.502 .23
ADS6223 9345.6941 6 9.011 .017 10.387 .017 9 .14 .02 1.90 .03 1.376 1.76
042581a 9345.6621 3 7.738 .020 9.910 .025 0 - - - - 2.172 -
-1504995a 8850.5992 3 9.475 .020 9.506 .020 0 - - - - .031 -
032144a 9347.5462 3 6.256 .017 8.367 .017 3 .32 .02 .71 .03 2.111 .39
032144a 9348.5582 6 6.245 .017 8.356 .017 7 .32 .02 .66 .02 2.111 .35
005843a 8851.9178 3 7.536 .020 11.881 .026 0 - - - - 4.345 -
005843a 8852.8897 3 7.534 .020 11.870 .022 0 - - - - 4.336 -
005843a 9345.4642 3 7.027 .020 11.259 .022 0 - - - - 4.231 -
005843a 9347.4026 3 7.623 .017 11.886 .017 3 2.15 .02 .70 .03 4.263 -1.45
005843a 9349.4065 3 7.621 .017 11.891 .018 3 2.17 .02 .76 .03 4.270 -1.41
000248a 9346.4267 5 8.467 .020 9.564 .020 3 .20 .03 .75 .03 1.097 .55
+1303203a 8848.5108 3 9.099 .032 9.595 .033 2 .75 .04 .84 .04 .496 .08
+1303203a 8849.4945 3 9.071 .025 9.564 .025 3 .73 .04 .80 .04 .493 .07
+1303203a 8850.5132 6 9.072 .020 9.567 .020 9 .75 .03 .83 .03 .496 .08
+1303203a 8851.4831 5 9.101 .020 9.593 .020 3 .75 .03 .83 .03 .491 .08
+1303203a 8852.4996 3 9.092 .020 9.574 .020 0 - - - - .482 -



  \begin{figure}
\par\includegraphics[angle=270,width=8.8cm,clip]{H2285.fig2.eps}
\end{figure} Figure 2: Distribution of differences in relative position, d, between filters V and i for the 225 systems discussed in the text. Black fields represent the 15 systems with $\rho < 3\hbox {$^{\prime \prime }$ }$ and $\Delta i > 2$  mag.


next previous
Up: CCD photometry and astrometry catalogue

Copyright ESO 2001