next previous
Up: Statistical equilibrium and photospheric Vega


   
2 Atomic data

The silicon model atom accounts for the most important levels and transitions of Si I and Si II and comprises 115 energy levels and 84 line transitions. For Si I (ionization limit at 8.15 eV) 75 energy levels up to 7.77 eV and 53 line transitions were included, for Si II (ionization limit at 16.35 eV) 40 energy levels up to 15.65 eV and 31 line transitions were taken into account. The atomic data are listed in Tables 1 and 2,

 

 
Table 1: Energy levels included in the model atom.
no. config. term $E ({\rm eV})$ gi   no. config. term $E ({\rm eV})$ gi  
                       
Si I 1 3s$^2\, 3$p$^2\, $ 3P 0.0186 9   59 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f $^2\lbrack9/2\rbrack $ 7.6394 20  
2 3s$^2\, 3$p$^2\, $ 1D 0.7810 5   60 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack9/2\rbrack^{\rm o}$ 7.6398 20 *
3 3s$^2\, 3$p$^2\, $ 1S 1.9087 1   61 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack7/2\rbrack^{\rm o}$ 7.6411 16 *
4 3s$ \, 3$p$^3\, (^4$P$ )\, $ 5S$^{\rm o} $ 4.1319 5   62 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack11/2\rbrack^{\rm o}$ 7.6429 24 *
5 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$s 3P$^{\rm o} $ 4.9420 9   63 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f $^2\lbrack3/2\rbrack $ 7.6434 8  
6 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$s 1P$^{\rm o} $ 5.0824 3   64 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack5/2\rbrack^{\rm o}$ 7.6442 12 *
7 3s$ \, 3$p$^3\, $ 3D$^{\rm o} $ 5.6169 15   65 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$s $(3/2,1/2)^{\rm o}$ 7.6679 8  
8 3s$^2\, 3$p$ \, 4$p 1P 5.8625 3   66 3s$^2\, 3$p$ \,5$d 3P$^{\rm o} $ 7.6730 9 *
9 3s$^2\, 3$p$ \, 3$d 1D$^{\rm o} $ 5.8708 5   67 3s$^2\, 3$p$ \,6$d 1D$^{\rm o} $ 7.7065 5  
10 3s$^2\, 3$p$ \, 4$p 3D 5.9713 15   68 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$p (1/2,1/2) 7.7101 4  
11 3s$^2\, 3$p$ \, 4$p 3P 6.0911 9   69 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$p (1/2,3/2) 7.7156 8  
12 3s$^2\, 3$p$ \, 4$p 3S 6.1248 3   70 3s$^2\, 3$p$ \,6$d 3F$^{\rm o} $ 7.7414 21  
13 3s$^2\, 3$p$ \, 3$d 3F$^{\rm o} $ 6.1959 21   71 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$p (3/2,3/2) 7.7491 16  
14 3s$^2\, 3$p$ \, 4$p 1D 6.2227 5   72 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$p (3/2,1/2) 7.7527 8  
15 3s$^2\, 3$p$ \, 3$d 3P$^{\rm o} $ 6.2653 9   73 3s$^2\, 3$p$ \,6$d 1P$^{\rm o} $ 7.7697 3  
16 3s$^2\, 3$p$ \, 4$p 1S 6.3990 1   74 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$f $^2\lbrack7/2\rbrack $ 7.7700 16  
17 3s$^2\, 3$p$ \, 3$d 1F$^{\rm o} $ 6.6161 7   75 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$f $^2\lbrack5/2\rbrack $ 7.7701 12  
18 3s$^2\, 3$p$ \, 3$d 1P$^{\rm o} $ 6.6192 3              
19 3s$^2\, 3$p$ \, 3$d 3D$^{\rm o} $ 6.7232 15   Si II 76 3s $^2\, (^1$S$ )\, 3$p 2P$^{\rm o} $ 0.0237 6  
20 3s$^2\, 3$p$ \,5$s 3P$^{\rm o} $ 6.7478 9   77 3s$ \, 3$p$^2\, $ 4P 5.3316 12 *
21 3s$^2\, 3$p$ \,5$s 1P$^{\rm o} $ 6.8031 3   78 3s$ \, 3$p$^2\, $ 2D 6.8587 10  
22 3s$^2\, 3$p$ \, 4$d 1D$^{\rm o} $ 7.0055 5   79 3s $^2\, (^1$S$ )\, 4$s 2S 8.1210 2  
23 3s$^2\, 3$p$ \, 4$d 3P$^{\rm o} $ 7.0298 9   80 3s$ \, 3$p$^2\, $ 2S 9.5054 2  
24 3s$^2\, 3$p$ \,5$p 1P 7.0399 3   81 3s $^2\, (^1$S$ )\, 3$d 2D 9.8380 10  
25 3s$^2\, 3$p$ \,5$p 3D 7.0787 15   82 3s $^2\, (^1$S$ )\, 4$p 2P$^{\rm o} $ 10.0715 6  
26 3s$^2\, 3$p$ \,5$p 3P 7.1170 9   83 3s$ \, 3$p$^2\, $ 2P 10.4069 6  
27 3s$^2\, 3$p$ \, 4$d 3F$^{\rm o} $ 7.1277 21   84 3s $^2\, (^1$S$ )\, 5$s 2S 12.1471 2  
28 3s$^2\, 3$p$ \,5$p 3S 7.1343 3   85 3s $^2\, (^1$S$ )\, 4$d 2D 12.5255 10  
29 3s$^2\, 3$p$ \,5$p 1D 7.1660 5   86 3s $^2\, (^1$S$ )\, 4$f 2F$^{\rm o} $ 12.8394 14  
30 3s$^2\, 3$p$ \,5$p 1S 7.2297 1   87 3s $^2\, (^1$S$ )\, 5$p 2P$^{\rm o} $ 12.8792 6  
31 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f $^2\lbrack5/2\rbrack $ 7.2872 12   88 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 3$d 2D$^{\rm o} $ 13.4901 10  
32 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f 3F 7.2888 16   89 3s $^2\, (^1$S$ )\, 6$s 2S 13.7852 2  
33 3s$^2\, 3$p$ \, 4$d 1P$^{\rm o} $ 7.2905 3   90 3s $^2\, (^1$S$ )\, 5$d 2D 13.9353 10  
34 3s$^2\, 3$p$ \, 4$d 1F$^{\rm o} $ 7.3019 7   91 3s $^2\, (^1$S$ )\, 5$f 2F$^{\rm o} $ 14.1046 14  
35 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f 3G 7.3196 16   92 3s $^2\, (^1$S$ )\, 6$p 2P$^{\rm o} $ 14.1308 6  
36 3s$^2\, 3$p$ \, 4$d 3D$^{\rm o} $ 7.3247 15   93 3s $^2\, (^1$S$ )\, 5$g 2G 14.1563 18  
37 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f $^2\lbrack5/2\rbrack $ 7.3288 12   94 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 3$d 4F$^{\rm o} $ 14.1858 28 *
38 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f $^2\lbrack9/2\rbrack $ 7.3312 20   95 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 4$s 4P$^{\rm o} $ 14.5136 12 *
39 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\, 4$f $^2\lbrack3/2\rbrack $ 7.3388 8   96 3s$^2\, (^1$S$ )\,7$s 2S 14.6196 2  
40 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$s 3P$^{\rm o} $ 7.3474 4   97 3s$^2\, (^1$S$ )\, 6$d 2D 14.6951 10  
41 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$s $(3/2,1/2)^{\rm o}$ 7.3840 8   98 3s$^2\, (^1$S$ )\,7$p 2P$^{\rm o} $ 14.7870 6  
42 3s$^2\, 3$p$ \, $nd 3P$^{\rm o} $ 7.4344 9   99 3s$^2\, (^1$S$ )\, 6$f 2F$^{\rm o} $ 14.7928 14  
43 3s$^2\, 3$p$ \,5$d 1D$^{\rm o} $ 7.4764 5   100 3s$^2\, (^1$S$ )\, 6$g 2G 14.8258 18  
44 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$p (1/2,1/2) 7.4938 4   101 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 4$s 2P$^{\rm o} $ 15.0693 6  
45 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$p (1/2,3/2) 7.5002 8   102 3s$^2\, (^1$S$ )\, 8$s 2S 15.1031 2  
46 3s$^2\, 3$p$ \,5$d 3F$^{\rm o} $ 7.5324 21   103 3s$^2\, (^1$S$ )\,7$d 2D 15.1463 10  
47 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$p (3/2,3/2) 7.5403 16   104 3s$^2\, (^1$S$ )\,7$f 2F$^{\rm o} $ 15.2073 14  
48 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,6$p (3/2,1/2) 7.5422 8   105 3s$^2\, (^1$S$ )\,7$g 2G 15.2296 18  
49 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f $^2\lbrack5/2\rbrack $ 7.6008 12   106 3p$^3\, $ 4S$^{\rm o} $ 15.2542 4 *
50 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f 3F 7.6010 16   107 3s $^2\, (^1$S$ )\, 8$p 2P$^{\rm o} $ 15.2656 6  
51 3s$^2\, 3$p$ \,5$d 1P$^{\rm o} $ 7.6011 3   108 3s $^2\, (^1$S$ )\, 9$s 2S 15.4084 2  
52 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack7/2\rbrack^{\rm o}$ 7.6060 16   109 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 3$d 4D$^{\rm o} $ 15.4204 20 *
53 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$g $^2\lbrack9/2\rbrack^{\rm o}$ 7.6061 20   110 3s $^2\, (^1$S$ )\, 8$d 2D 15.4355 10  
54 3s$^2\, 3$p$ \,5$d 1F$^{\rm o} $ 7.6156 7   111 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 3$d 4P$^{\rm o} $ 15.4479 12 *
55 3s$^2\, 3$p$ \,5$d 3D$^{\rm o} $ 7.6276 15   112 3s $^2\, (^1$S$ )\, 8$f 2F$^{\rm o} $ 15.4760 14  
56 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f 3G 7.6329 16   113 3s $^2\, (^1$S$ )\, 8$g 2G 15.4916 18  
57 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,7$s 3P$^{\rm o} $ 7.6351 4   114 3s $^2\, (^1$S$ )\, 9$p 2P$^{\rm o} $ 15.5018 6  
58 3s$^2\, 3$p$ \,(^2$P $^{\rm o} )\,5$f 3D 7.6372 12   115 3s$ \, 3$p$ \, (^3$P $^{\rm o} )\, 3$d 2P$^{\rm o} $ 15.6531 6  



 

 
Table 2: Line transitions used in the model atom.
no. mult. i k $\lambda$ (Å) $\log gf$     no. mult. i k $\lambda$ (Å) $\log gf$  
Si I-1 0.01F 1 2 16263.251 -9.126 F   Si I-43 31 8 22 10846.829 +0.150 F
Si I-2 1F 1 3 6567.708 -9.634 F   Si I-44 32.02 8 33 8680.080 -3.191 F
Si I-3 0.01 1 4 3014.243 -4.522 F   Si I-45 34 8 41 8093.231 -1.354 F
Si I-4 UV 1 1 5 2517.485 +0.173 F   Si I-46 36 8 43 7680.265 -0.691 F
Si I-5 UV 2 1 6 2448.510 -2.264 F   Si I-47 38 8 67 6721.840 -0.938 F
Si I-6 UV 3 1 7 2213.972 -0.217 F   Si I-48 42.21 10 20 15964.678 +0.456 F
Si I-7 UV 7 1 15 1984.967 -0.314 V   Si I-49 53 10 27 10720.959 +0.672 F
Si I-8 UV 8 1 17 1881.854 -1.922 V   Si I-50 57 10 46 7939.870 +0.061 F
Si I-9 UV 10 1 19 1849.336 +0.387 V   Si I-51 60 10 70 7002.660 -0.380 F
Si I-10 UV 11 1 20 1842.489 -0.663 V   Si I-52   11 21 17205.800 -1.450 L
Si I-11 2F 2 3 10991.400 -7.839 F   Si I-53   12 20 20343.900 -0.810 L
Si I-12 1 2 5 2979.674 -2.045 F   Si II-1 UV 0.01 76 77 2325.848 -4.193 F
Si I-13 UV 43 2 6 2881.577 -0.151 F   Si II-2 UV 1 76 78 1813.980 -1.474 F
Si I-14 UV 45 2 9 2435.154 -0.680 V   Si II-3 UV 2 76 79 1531.183 -0.108 F
Si I-15 UV 48 2 17 2124.111 +0.533 V   Si II-4 UV 3 76 80 1307.636 -0.249 F
Si I-16 UV 49 2 18 2122.990 -0.915 V   Si II-5 UV 4 76 81 1263.313 +0.759 F
Si I-17 UV 50 2 19 2084.462 -1.573 V   Si II-6 UV 5 76 83 1194.096 +0.742 F
Si I-18 UV 51 2 20 2082.021 -2.229 V   Si II-7 UV 5.01 76 84 1022.698 -0.902 F
Si I-19 UV 52 2 21 2058.133 -1.030 V   Si II-8 UV 6 76 85 991.745 +0.072 F
Si I-20 UV 53 2 22 1991.853 -2.189 V   Si II-9   77 82 2618.212 -4.135 F
Si I-21 2 3 5 4102.935 -2.916 F   Si II-10   77 86 1652.411 -3.759 F
Si I-22 3 3 6 3905.521 -1.092 F   Si II-11   77 106 1249.510 +0.551 F
Si I-23 UV 82 3 15 2842.333 -3.274 V   Si II-12 1 78 82 3858.050 -0.426 F
Si I-24 UV 83 3 18 2631.282 -0.520 V   Si II-13 UV 9 78 86 2072.430 -0.045 F
Si I-25 UV 86 3 21 2532.381 -1.200 V   Si II-14 2 79 82 6355.200 +0.406 F
Si I-26 4 5 10 12045.959 +0.744 F   Si II-15 3 81 86 4129.760 +0.706 F
Si I-27 5 5 11 10789.570 +0.539 F   Si II-16 UV 17 81 91 2905.130 +0.100 F
Si I-28 6 5 12 10482.452 +0.074 F   Si II-17 UV 18 81 99 2501.570 -0.269 F
Si I-29   5 14 9768.400 -2.300 L   Si II-18 4 82 84 5971.800 +0.109 F
Si I-30 9 5 25 5800.880 -0.866 F   Si II-19 5 82 85 5051.010 +0.662 F
Si I-31 10 5 26 5698.800 -0.867 F   Si II-20 6 82 89 3337.590 -0.823 F
Si I-32 11 5 28 5653.900 -1.170 F   Si II-21 7 82 90 3207.970 -0.149 F
Si I-33 11.04 5 45 4846.646 -1.527 F   Si II-22 UV 19 82 96 2725.220 -1.272 F
Si I-34 11.06 5 48 4768.462 -1.155 F   Si II-23   83 86 5113.168 -3.514 F
Si I-35 11.12 6 8 15892.767 -0.036 F   Si II-24 7.02 85 91 7849.400 +0.735 F
Si I-36   6 11 12390.200 -1.710 L   Si II-25 7.03 85 99 5466.720 +0.213 F
Si I-37   6 12 11890.500 -2.090 L   Si II-26 7.05 85 104 4621.600 -0.144 F
Si I-38 13 6 14 10872.520 +0.309 F   Si II-27 7.12 86 97 6679.650 -1.028 F
Si I-39 14 6 16 9413.506 -0.445 F   Si II-28 7.19 87 96 7121.700 -0.642 F
Si I-40 14.01 6 24 6331.957 -3.744 F   Si II-29 7.20 87 97 6826.000 -0.042 F
Si I-41 16 6 29 5948.540 -1.234 F   Si II-30 7.21 87 102 5573.430 -1.096 F
Si I-42 17 6 30 5772.145 -1.745 F   Si II-31 7.23 87 108 4900.700 -1.418 F
F = Fuhr & Wiese (1998), L = Lambert & Luck (1978), V = VALD (Piskunov et al. 1995 ; Kurucz 1993).


while Fig. 1 shows the corresponding Grotrian diagrams.

The data for the energy levels were adopted from a compilation of Martin & Zalubas (1983) which is available from the internet server of the National Institute of Standards and Technology (NIST, http://physics.nist.gov). This source also includes some unpublished measurements. It should be mentioned that apart from LS coupling, other schemes ( $Jl(j_{\rm c} \lbrack K \rbrack ^\pi_J$), $Jj((j,J)^\pi$) were found for Si I. For consistency and practical reasons the concerned energy levels were designated to LS coupling if possible (Table 1).

Data for the line transitions used in the model atom (Table 2) were obtained from the NIST server, the Vienna Atomic Line Data Base (Piskunov et al. 1995; Kurucz 1993) and Lambert & Luck (1978). The NIST data refer to the compilation of Wiese et al. (1969) and the newer version by Fuhr & Wiese (1998). The latter provides improved transition probabilities for some line transitions.
Photoionization cross-sections were taken from the Opacity Project (Seaton et al. 1992, 1994) for almost all energy levels with the exception of eleven mostly high excited ones (marked with * in Table 1). In these cases the Kramers Gaunt aproximation for hydrogen-like atoms as given by Allen (1973) was used.

  \begin{figure}
\par\resizebox{10cm}{!}{\includegraphics{ms1145f1.ps}} \end{figure} Figure 1: Grotrian diagrams of the silicon model atom including Si I with 75 energy levels and 53 line transitions and Si II with 40 levels and 31 transitions.

The majority of the more important electron collisional cross-sections of Si I were calculated using the tables given by Sobelman et al. (1981). Transistions not covered by the Sobelman tables were treated with the formulas compiled by Drawin (1967) but additionally needed to be scaled to the corresponding maximum cross-sections. For optically allowed transitions, the maximum cross-sections were calculated with the approximation of Van Regemorter (1962) using all available oscillator strengths and additional values from the Opacity Project. In all other cases, especially for optically forbidden transitions, the cross-sections were scaled with the collision strength formula described by Allen (1973).
Drawin (1967) also provides an estimate for collisional ionization by electrons, which was applied here, and for inelastic collisions with neutral hydrogen atoms. Cross-sections for the latter were calculated with the more generalized formula given by Steenbock & Holweger (1984). Due to a complete lack of data, the collisional parameter Q (maximum cross-section in units of $\pi\,a_0^2\,$) in this formula was set equal to the value of the respective electron collision (derived via the different approximations for optically allowed and forbidden bound-bound and bound-free collisions described above) and was additionally scaled with an empirical factor $S_{\rm H}=0.1$ (Holweger 1996).


next previous
Up: Statistical equilibrium and photospheric Vega

Copyright ESO 2001