The magnitudes of the hosts have been derived by integrating the r1/4 profiles for all the objects. Indeed, it can be seen in Fig. 4 that there is an excess of light at small radii compared to the disk profile for all objects. This suggests that in our sample, the disk galaxies also have a strong bulge and/or a strong bar. This is confirmed by the 2D luminosity distribution. Results are given in Table 2. We have also subtracted a scaled version of the most suitable PSF for each nucleus (imposing a non-negative profile in the center, see Márquez et al. 1999) The resulting host magnitudes, computed by integrating the PSF-subtracted images, are in good agreement with those obtained from the profile fitting (see Table 2).
In order to test our fitting procedure, we have generated images of model elliptical and disk galaxies with scale-lengths and effective surface brightness within the range derived from the data. The same orientation and axis ratio is given to all of them. A point source is added in the center of the galaxy to mimic the quasar. An appropriate amount of noise is added, and then the images are convolved with a typical observed PSF. The mock data images are analyzed in the same way as real data.
We first note that an elliptical galaxy is always recognized as an elliptical galaxy by the fitting procedure, whereas a disk-galaxy is better fitted by a r1/4 law when the unresolved point-source contributes more than half the total light. This is illustrated in Fig. 5. This means that, at least with data of similar quality to those presented here, the fraction of elliptical galaxies in the sample may be overpredicted. Going deeper, at least 0.5 to 1 mag, should help solve this problem as it is apparent that the distinction between spiral and elliptical profiles is easier when the galaxy is detected at larger distances from the central point-source.
It is interesting to note that the output magnitudes are brighter than the input in both cases, elliptical or disk galaxies (see Figs. 6 and 7). The reason for this is probably the difficulty in determining the extension of the PSF wings which, if not subtracted properly, will artificially increase the flux of the host-galaxy. In the case of spirals, the difference is as large as 0.6 mag when the contribution of the point-source is the same as the contribution of the host-galaxy (see Fig. 6). For the ellipticals, the difference is less but still important when the QSO dominates the total flux.
Note that the ratio between the QSO and the host-galaxy luminosities is expected to increase with redshift. The above bias tends to imply that host-galaxy luminosities could be overestimated.
Copyright ESO 2001