next previous
Up: The Ursa Major cluster


Subsections

3 Data acquisition and reduction

The HI data presented in this paper were obtained with the Westerbork Synthesis Radio Telescope (WSRT) between 1991 and 1996. The integration times varied between $1 \times 12^{\rm h}$ and $5 \times 12^{\rm h}$ depending on the required signal-to-noise. The angular resolution at the center of the cluster is $12^{\prime\prime}\times16^{\prime\prime}$ or $1.08\times 1.44$ kpc at the adopted distance of 18.6 Mpc. The FWHM of the primary beam is 37.4 arcminutes or 202 kpc. As a result, often more than one galaxy was mapped in a single field of view. The observed bandwidth was either 2.5 or 5 MHz, depending on the width of the global profiles. The observations of the NGC 3992-group and the NGC 4111-group required a broad frequency band of 5 MHz and at the same time also sufficient velocity resolution for the dwarf systems. To comply with the correlator restrictions, those two fields were observed only in one polarization (XX) which allowed for a velocity resolution of 10 km s-1 but resulted in less sensitivity. During the earlier measurements an on-line Hanning taper was applied but this tapering was abandoned later to obtain the highest possible velocity resolution. The various obtained velocity resolutions (dependent on the correlator restrictions) were 5, 8, 10, 20 or 33 km s-1, corresponding to typical rms-noise levels of respectively 3.1, 1.9, 2.9, 1.6 and 1.0 mJy beam-1 for a single 12h observation at the highest angular resolution. The data of NGC 4013 were kindly made available by R. Bottema who studied this system in great detail (Bottema 1996 and references therein).

More details on the observational parameters for each field are tabulated in the atlas along with the data. What follows is a brief description of the reduction procedures.


 

 
Table 1: All galaxies in the Ursa Major cluster brighter than Mb,i(B)=-16.8 and more inclined than 45 degrees
Name RA Dec Galactic Type D25(B) PA 1-b/a $i_{\rm opt}$ $i_{\rm adopt}$ S.B. [BH]

(1950) Long. Lat.   ($^\prime$) ($^\circ$)   ($^\circ$) ($^\circ$)   mag mag

(1)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Galaxies with fully analyzed HI data:  

U6399
11 20 35.9 51 10 09 152.08 60.96 Sm 2.40 140 0.72 79 $75\pm2$ LSB 0.00 0.07
U6446 11 23 52.9 54 01 21 147.56 59.14 Sd 2.27 200 0.38 54 $51\pm3$ LSB 0.00 0.07
N3726 11 30 38.7 47 18 20 155.38 64.88 SBc 5.83 194 0.38 54 $53\pm2$ HSB 0.01 0.07
N3769 11 35 02.8 48 10 10 152.72 64.75 SBb 2.97 150 0.69 76 $70\pm2$ HSB 0.01 0.10
U6667 11 39 45.3 51 52 32 146.27 62.29 Scd 3.43 88 0.88 90 $89\pm1$ LSB 0.00 0.07
N3877 11 43 29.3 47 46 21 150.72 65.96 Sc 5.40 36 0.78 84 $76\pm1$ HSB 0.01 0.10
N3893 11 46 00.2 48 59 20 148.15 65.23 Sc 3.93 352 0.33 49 $49\pm2$ HSB 0.02 0.09
N3917 11 48 07.7 52 06 09 143.65 62.79 Scd 4.67 257 0.76 82 $79\pm2$ LSB 0.01 0.09
N3949 11 51 05.5 48 08 14 147.63 66.40 Sbc 2.90 297 0.38 54 $55\pm2$ HSB 0.03 0.09
N3953 11 51 12.4 52 36 18 142.21 62.59 SBbc 6.10 13 0.50 62 $62\pm1$ HSB 0.01 0.13
N3972 11 53 09.0 55 35 56 138.85 60.06 Sbc 3.43 298 0.72 79 $77\pm1$ HSB 0.00 0.06
U6917 11 53 53.1 50 42 27 143.46 64.45 SBd 3.17 123 0.46 59 $56\pm2$ LSB 0.03 0.12
U6923 11 54 14.4 53 26 19 140.51 62.06 Sdm 1.97 354 0.58 68 $65\pm2$ LSB 0.00 0.12
U6930i 11 54 42.3 49 33 41 144.54 65.51 SBd 3.00 39 0.14 32 $31\pm3$ LSB 0.05 0.13
N3992 11 55 00.9 53 39 11 140.09 61.92 SBbc 6.93 248 0.44 58 $56\pm2$ HSB 0.01 0.13
U6940f 11 55 12.4 53 30 46 140.17 62.06 Scd 0.83 135 0.72 79 $75\pm3$ LSB 0.00 0.12
U6962i 11 55 59.5 43 00 44 154.08 71.05 SBcd 2.33 179 0.20 38 $37\pm3$ HSB 0.00 0.09
N4010 11 56 02.0 47 32 16 146.68 67.36 SBd 4.63 65 0.88 90 $89\pm1$ LSB 0.00 0.11
U6969 11 56 12.9 53 42 11 139.70 61.96 Sm 1.50 330 0.69 76 $76\pm2$ LSB 0.01 0.13
U6973 11 56 17.8 43 00 03 153.97 71.10 Sab 2.67 40 0.61 70 $71\pm3$ HSB 0.00 0.09
U6983 11 56 34.9 52 59 08 140.27 62.62 SBcd 3.20 270 0.34 50 $49\pm1$ LSB 0.01 0.12
N4051 12 00 36.4 44 48 36 148.88 70.08 SBbc 5.90 311 0.34 50 $49\pm3$ HSB 0.00 0.06
N4085 12 02 50.4 50 37 54 140.59 65.17 Sc 2.80 255 0.76 82 $82\pm2$ HSB 0.01 0.08
N4088 12 03 02.0 50 49 03 140.33 65.01 Sbc 5.37 231 0.63 71 $69\pm2$ HSB 0.01 0.09
N4100 12 03 36.4 49 51 41 141.11 65.92 Sbc 5.23 344 0.71 77 $73\pm2$ HSB 0.03 0.10
N4102 12 03 51.3 52 59 22 138.08 63.07 SBab 3.00 38 0.44 58 $56\pm2$ HSB 0.01 0.09
N4157 12 08 34.2 50 45 47 138.47 65.41 Sb 6.73 63 0.83 90 $82\pm3$ HSB 0.02 0.09
N4183 12 10 46.5 43 58 33 145.39 71.73 Scd 4.77 346 0.86 90 $82\pm2$ LSB 0.00 0.06
N4217 12 13 21.6 47 22 11 139.90 68.85 Sb 5.67 230 0.74 80 $86\pm2$ HSB 0.00 0.08
N4389 12 23 08.8 45 57 41 136.73 70.74 SBbc 2.50 276 0.34 50 $50\pm4$ HSB 0.00 0.06

Galaxies with partially analyzed HI data:
 

N3718
11 29 49.9 53 20 39 147.01 60.22 Sa 7.53 195 0.58 68 $69\pm3$ HSB 0.00 0.06
N3729 11 31 04.9 53 24 08 146.64 60.28 SBab 2.80 164 0.32 48 $49\pm3$ HSB 0.00 0.05
U6773 11 45 22.1 50 05 12 146.89 64.27 Sm 1.53 341 0.47 60 $58\pm3$ LSB 0.00 0.07
U6818 11 48 10.1 46 05 09 151.76 67.78 Sd 2.20 77 0.72 79 $75\pm3$ LSB 0.00 0.09
U6894 11 52 47.3 54 56 08 139.52 60.63 Scd 1.67 269 0.84 90 $83\pm3$ LSB 0.00 0.06
N3985 11 54 06.4 48 36 48 145.94 66.27 Sm 1.40 70 0.37 53 $51\pm3$ HSB 0.05 0.11
N4013 11 55 56.8 44 13 31 151.86 70.09 Sb 4.87 245 0.76 88 $90\pm1$ HSB 0.00 0.07
U7089 12 03 25.4 43 25 18 149.90 71.52 Sdm 3.50 215 0.81 90 $80\pm3$ LSB 0.00 0.07
U7094 12 03 38.5 43 14 05 150.14 71.70 Sdm 1.60 39 0.64 72 $70\pm3$ LSB 0.00 0.06
N4117 12 05 14.2 43 24 17 149.07 71.72 S0 1.53 21 0.56 67 $68\pm3$ LSB 0.00 0.06
N4138 12 06 58.6 43 57 49 147.29 71.40 Sa 2.43 151 0.37 53 $53\pm3$ HSB 0.00 0.06
N4218 12 13 17.4 48 24 36 138.88 67.88 Sm 1.17 316 0.40 55 $53\pm3$ HSB 0.00 0.07
N4220 12 13 42.8 48 09 41 138.94 68.13 Sa 3.63 140 0.69 76 $78\pm3$ HSB 0.00 0.08

Galaxies with confused HI data:
 

1135+48
11 35 09.2 48 09 31 152.71 64.77 Sm 1.23 114 0.69 76 $73\pm3$ LSB 0.01 0.10
N3896 11 46 18.6 48 57 10 148.10 65.29 Sm 1.60 308 0.33 49 $48\pm3$ LSB 0.02 0.09

Not observed or too little HI content:
 

N3870
11 43 17.5 50 28 40 147.02 63.75 S0a 1.13 17 0.31 47 $48\pm3$ HSB 0.00 0.07
N3990 11 55 00.3 55 44 13 138.25 60.04 S0 1.47 40 0.50 62 $63\pm3$ HSB 0.00 0.07
N4026 11 56 50.7 51 14 24 141.94 64.20 S0 4.37 177 0.74 80 $84\pm3$ HSB 0.04 0.10
N4111 12 04 31.0 43 20 40 149.53 71.69 S0 4.47 150 0.78 84 $90\pm3$ HSB 0.00 0.06
U7129 12 06 23.6 42 01 08 151.00 72.99 Sa 1.27 72 0.31 47 $48\pm3$ HSB 0.00 0.06
N4143 12 07 04.6 42 48 44 149.18 72.40 S0 2.60 143 0.46 59 $60\pm3$ HSB 0.00 0.06
N4346 12 21 01.2 47 16 15 136.57 69.39 S0 3.47 98 0.67 75 $77\pm3$ HSB 0.00 0.06



 

 
Table 2: Photometrics of all galaxies in the UMa cluster brighter than Mb,i(B)=-16.8 and more inclined than 45 degrees

Name
$m^{\rm tot}_{B}$ $m^{\rm tot}_{R}$ $m^{\rm tot}_{I}$ $m^{\rm tot}_{K^\prime}$ WR,Ii AiB AiR AiI $A^i_{K^\prime}$ Mb,iB Mb,iR Mb,iI $M^{b,i}_{K^\prime}$ Db,i25

mag mag mag mag $\rm {km~s}^{-1}$ mag mag mag mag mag mag mag mag ($^\prime$)

(1)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Galaxies with fully analyzed HI data:

U6399
14.33 13.31 12.88 11.09 172 0.47 0.36 0.27 0.06 -17.56 -18.44 -18.77 -20.33 1.84
U6446 13.52 12.81 12.58 11.50 174 0.18 0.14 0.10 0.02 -18.08 -18.72 -18.90 -19.88 2.07
N3726 11.00 9.97 9.51 7.96 331 0.34 0.25 0.20 0.05 -20.76 -21.67 -22.07 -23.45 5.32
N3769 12.80 11.56 10.99 9.10 256 0.67 0.50 0.39 0.09 -19.32 -20.35 -20.80 -22.35 2.34
U6667 14.33 13.11 12.63 10.81 167 0.74 0.58 0.43 0.10 -17.83 -18.87 -19.18 -20.65 2.18
N3877 11.91 10.46 9.72 7.75 335 1.06 0.78 0.62 0.15 -20.60 -21.73 -22.29 -23.76 3.95
N3893 11.20 10.19 9.71 7.84 382 0.31 0.23 0.18 0.04 -20.55 -21.45 -21.86 -23.56 3.67
N3917 12.66 11.42 10.85 9.08 276 0.87 0.64 0.51 0.12 -19.65 -20.63 -21.05 -22.40 3.48
N3949 11.55 10.69 10.28 8.43 321 0.33 0.24 0.20 0.05 -20.22 -20.96 -21.31 -22.98 2.66
N3953 11.03 9.66 9.02 7.03 446 0.60 0.43 0.35 0.08 -21.05 -22.20 -22.74 -24.41 5.38
N3972 13.09 11.90 11.34 9.39 264 0.76 0.56 0.44 0.11 -19.08 -20.05 -20.48 -22.08 2.62
U6917 13.15 12.16 11.74 10.30 224 0.31 0.23 0.18 0.04 -18.63 -19.49 -19.84 -21.10 2.84
U6923 13.91 12.97 12.36 11.04 160 0.28 0.22 0.16 0.04 -17.84 -18.67 -19.20 -20.36 1.67
U6930i 12.70 11.71 11.39 10.33 231 0.08 0.06 0.05 0.01 -18.86 -19.78 -20.07 -21.04 2.98
N3992 10.86 9.55 8.94 7.23 547 0.56 0.40 0.33 0.08 -21.18 -22.28 -22.80 -24.21 6.27
U6940f 16.45 15.65 15.44 13.99 50 0.00 0.00 0.00 0.00 -15.02 -15.77 -15.96 -17.37 0.64
U6962i 12.88 11.88 11.42 10.11 327 0.16 0.11 0.09 0.02 -18.72 -19.64 -20.06 -21.27 2.26
N4010 13.36 12.14 11.55 9.22 254 1.20 0.89 0.70 0.17 -19.30 -20.17 -20.55 -22.31 2.97
U6969 15.12 14.32 14.04 12.58 117 0.20 0.17 0.11 0.02 -16.56 -17.28 -17.48 -18.80 1.19
U6973 12.94 11.26 10.53 8.23 364 0.71 0.52 0.42 0.10 -19.21 -20.67 -21.28 -23.23 2.21
U6983 13.10 12.27 11.91 10.52 221 0.21 0.16 0.12 0.03 -18.58 -19.31 -19.61 -20.87 2.99
N4051 10.98 9.88 9.37 7.86 308 0.28 0.21 0.17 0.04 -20.71 -21.72 -22.18 -23.54 5.45
N4085 13.09 11.87 11.28 9.20 247 0.78 0.58 0.46 0.11 -19.12 -20.11 -20.57 -22.27 2.08
N4088 11.23 10.00 9.37 7.46 362 0.74 0.54 0.43 0.10 -20.95 -21.94 -22.45 -24.00 4.40
N4100 11.91 10.62 10.00 8.02 386 0.97 0.70 0.57 0.14 -20.51 -21.49 -21.97 -23.48 4.07
N4102 12.04 10.54 9.93 7.86 393 0.46 0.34 0.27 0.07 -19.86 -21.20 -21.73 -23.57 2.69
N4157 12.12 10.60 9.88 7.52 399 1.40 1.02 0.82 0.20 -20.72 -21.83 -22.33 -24.04 4.64
N4183 12.96 11.99 11.51 9.76 228 1.01 0.76 0.59 0.14 -19.46 -20.16 -20.46 -21.74 3.13
N4217 12.15 10.62 9.84 7.61 381 1.05 0.76 0.62 0.15 -20.33 -21.54 -22.16 -23.90 4.29
N4389 12.56 11.33 10.87 9.12 212 0.20 0.15 0.12 0.03 -19.05 -20.21 -20.63 -22.27 2.31

Galaxies with partially analyzed HI data:

N3718
11.28 9.95 9.29 7.47 476 0.77 0.55 0.45 0.11 -20.90 -21.99 -22.54 -24.00 6.30
N3729 12.31 10.94 10.30 8.60 296 0.25 0.18 0.15 0.03 -19.34 -20.62 -21.22 -22.78 2.60
U6773 14.42 13.61 13.15 11.23 112 0.09 0.08 0.05 0.01 -17.09 -17.87 -18.28 -20.14 1.35
U6818 14.43 13.62 13.15 11.70 151 0.39 0.31 0.22 0.05 -17.40 -18.10 -18.46 -19.71 1.69
U6894 15.27 14.31 14.00 12.40 124 0.37 0.31 0.21 0.05 -16.51 -17.39 -17.59 -19.01 1.13
N3985 13.25 12.26 11.81 10.19 180 0.18 0.14 0.10 0.02 -18.39 -19.30 -19.69 -21.19 1.29
N4013 12.44 10.79 9.95 7.68 377 1.10 0.80 0.64 0.15 -20.08 -21.40 -22.07 -23.83 3.61
U7089 13.73 12.77 12.36 11.11 138 0.42 0.34 0.24 0.05 -18.11 -18.96 -19.26 -20.30 2.46
U7094 14.74 13.70 13.22 11.58 76 0.00 0.00 0.00 0.00 -16.67 -17.69 -18.16 -19.78 1.29
N4117 14.05 12.47 11.81 9.98 285 0.00 0.00 0.00 0.00 -17.36 -18.92 -19.57 -21.38 1.29
N4138 12.27 10.72 10.09 8.19 374 0.36 0.26 0.21 0.05 -19.50 -20.93 -21.50 -23.22 2.22
N4218 13.69 12.83 12.41 10.83 150 0.15 0.12 0.09 0.02 -17.88 -18.68 -19.06 -20.55 1.06
N4220 12.34 10.79 10.03 8.36 399 0.94 0.68 0.55 0.13 -20.03 -21.29 -21.91 -23.13 2.85

Galaxies with confused HI data:

1135+48
14.95 14.05 13.61 11.98 111 0.17 0.15 0.09 0.02 -16.67 -17.51 -17.88 -19.40 0.97
N3896 13.75 12.96 12.47 11.35 83 0.00 0.00 0.00 0.00 -17.69 -18.45 -18.92 -20.01 1.49

Not observed or too little HI content:

N3870
13.67 12.71 12.16 10.73 127 0.08 0.06 0.04 0.01 -17.83 -18.74 -19.26 -20.64 1.06
N3990 13.53 12.08 11.36 9.54 ... 0.00 0.00 0.00 0.00 -17.89 -19.31 -20.02 -21.82 1.28
N4026 11.71 10.25 9.57 7.65 ... 0.00 0.00 0.00 0.00 -19.74 -21.16 -21.82 -23.71 3.32
N4111 11.40 9.95 9.25 7.60 ... 0.00 0.00 0.00 0.00 -20.01 -21.44 -22.13 -23.76 3.24
U7129 14.13 12.80 12.19 ... ... 0.08 0.06 0.04 0.01 -17.36 -18.65 -19.23 ... 1.19
N4143 12.06 10.55 9.84 7.86 ... 0.00 0.00 0.00 0.00 -19.35 -20.83 -21.54 -23.50 2.30
N4346 12.14 10.69 9.96 8.21 ... 0.00 0.00 0.00 0.00 -19.27 -20.70 -21.42 -23.15 2.75



 

 
Table 3: A comparison of the widths and integrated fluxes from the present WSRT survey and from the literature

This study Literature
Name W20 $\pm$ Res. $\int S{\rm d}v$ $\pm$ W20 $\pm$ Res. $\int S{\rm d}v$ $\pm$ Ref.
  - - - km s-1 - - - - Jy km s-1 - - - - km s-1 - - - - Jy km s-1 -  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)


U6399
188.1 1.4 8.3 10.5 0.3 178 20 22 10.1 1.9 1 
U6446 154.1 1.0 5.0 40.6 0.5 162 10 22 45.9 4.1 1 
N3718(c) 492.8 1.0 33.2 140.9 0.9 480 10 5.5 84.9 26.4 1 
            508m .. 33 120 ... 8 $^{\rm WSRT}$
N3726 286.5 1.6 5.0 89.8 0.8 290 10 5.5 83.9 10.8 1 
N3729 $^{\rm noSD}$ 270.8 1.5 33.2 5.5 0.3 ... .. .. ... ... .. 
            279m .. 33 25? ... 8 $^{\rm WSRT}$
N3769i 265.3 6.7 8.3 62.3 0.6 276 20 7.4 44.1 4.2 2 
U6667 187.5 1.4 5.0 11.0 0.4 210 20 22 11.6 2.2 1 
N3877 373.4 5.0 33.2 19.5 0.6 352 10 22 24.8 5.6 1 
U6773 110.4 2.3 8.3 5.6 0.4 118 8 22 5.6 0.7 6 
N3893(c) 310.9 1.0 5.0 69.9 0.5 313 8 22 85.3 5.1 1 
N3917 294.5 1.9 8.3 24.9 0.6 284 10 22 21.9 4.7 1 
U6818 166.9 2.3 8.3 13.9 0.2 168 15 22 14.8 2.1 1 
N3949 286.5 1.4 8.3 44.8 0.4 289 10 22 42.7 5.4 1 
N3953l 441.9 2.4 33.1 39.3 0.8 423 10 22 41.0 3.9 1 
U6894 141.8 1.1 8.3 5.8 0.2 159 20 7.4 5.1 1.7 2 
N3972 281.2 1.4 8.3 16.6 0.4 270 15 22 14.0 2.6 1 
U6917 208.9 3.2 8.3 26.2 0.3 211 10 22 31.5 4.1 1 
N3985 160.2 3.7 8.3 15.7 0.6 168 .. 22 14.1 0.9 5 
U6923 166.8 2.4 10.0 10.7 0.6 175 15 22 8.2 2.9 1 
            189m 15 41.4 15.6 ... 12 $^{\rm VLA}$
U6930 136.5 0.5 8.3 42.7 0.3 145 8 22 38.2 3.5 1 
N3992l 478.5 1.4 10.0 74.6 1.5 480 10 22 81.2 5.3 1 
            507m 15 41.4 79.9 ... 12 $^{\rm VLA}$
U6940 59.3 3.8 10.0 2.1 0.3 226 .. 22 7.0 1.0 3 
            121m 15 41.4 2.7 ... 12 $^{\rm VLA}$
N4013 425.0 0.9 33.0 41.5 0.2 403 10 22 33.8 3.7 1 
U6962(c) 220.3 6.6 8.3 10.0 0.3 ... .. 22 21.6 4.4 1 
            235 .. 33 9.2 1.0 4 $^{\rm WSRT}$
N4010 277.7 1.0 8.3 38.2 0.3 281 10 22 38.1 3.4 1 
U6969c 132.1 6.4 10.0 6.1 0.5 146 .. 13.2 6.0 1.4 3 
            159m 15 41.4 6.9 ... 12 $^{\rm VLA}$
U6973 $^{\rm noSD}$ 367.8 1.8 8.3 22.9 0.2 ... .. .. ... ... .. 
            408 .. 33 18.3 1.2 4 $^{\rm WSRT}$
U6983 188.4 1.3 5.0 38.5 0.6 205 10 22 36.2 4.4 1 
N4051l 255.4 1.8 5.0 35.6 0.8 274 15 22 43.4 3.3 1 
N4085c 277.4 6.6 19.8 14.6 0.9 299 20 7.4 23.3 2.5 2 
            311m .. 33 24! ... 13 $^{\rm WSRT}$
N4088(c) 371.4 1.7 19.8 102.9 1.1 381 8 22 109.2 6.4 1 
            378m .. 33 128! ... 13 $^{\rm WSRT}$
U7089(c) 156.7 1.7 10.0 17.0 0.6 162 10 22 17.8 2.2 1 
            176 .. 33.4 18.9 ... 11 $^{\rm WSRT}$
N4100 401.8 2.0 19.9 41.6 0.7 420 20 22 54.0 7.3 1 
U7094c 83.7 1.7 10.0 2.9 0.2 112 8 22 6.0 0.6 6 
            153? .. 33.4 2.5 ... 11 $^{\rm WSRT}$
N4102 349.8 2.0 8.3 8.0 0.2 327 20 7.4 10.3 2.1 2 
N4117 $^{\rm noSD}$ 289.4 7.5 10.0 6.9 1.1 ... .. .. ... ... .. 
            314 .. 33.4 5.3 ... 11 $^{\rm WSRT}$
N4138 331.6 4.5 19.9 19.2 0.7 354m 30 6.8 16 ... 14 
            340 5 5.2 20.6 0.3 7 $^{\rm VLA}$
N4157(c),l 427.6 2.2 19.9 107.4 1.6 436 10 22 123.9 9.5 1 
N4183 249.6 1.2 8.3 48.9 0.7 258 10 22 49.6 5.3 1 
N4218 138.0 5.0 8.3 7.8 0.2 160 20 13 5.7 0.9 9 
N4217 428.1 5.1 33.2 33.8 0.7 426 20 22 51.8 7.2 1 
N4220 438.1 1.3 33.1 4.4 0.3 382m .. 11 3.3 ... 10 
N4389 184.0 1.5 8.3 7.6 0.2 174 20 7.4 7.6 0.8 2 



 
Table 3: continued. Notes

(c):
the authors suggest possible confusion with a dwarf companion.
c: flagged by the authors as confused with near companion.
l: large correction factor (>1.20) applied for primary beam flux attenuation.
i: flagged by the authors as possibly interacting.
$^{\rm noSD}$: no useful single dish profile available due to obvious confusion.
m: line width directly measured from the published HI profile.
!: the integrated flux as quoted by the author is a factor 2 larger than is quoted by
  any other source. Therefore, half the integrated flux was adopted from this source.
$^{\rm WSRT}$: synthesis observation with the WSRT.
$^{\rm VLA}$: synthesis observation with the VLA.
References: 1: Fisher & Tully (1981) 8: Schwarz (1985)
  2: Appleton & Davies (1982) 9: Thuan & Martin (1981)
  3: Richter & Huchtmeier (1991) 10: Magri (1994)
  4: Oosterloo & Shostak (1993) 11: Van der Burg (1987)
  5: Huchtmeier & Richter (1986) 12: Gottesman et al. (1984)
  6: Schneider et al. (1992) 13: Van Moorsel (1983)
  7: Jore et al. (1996) 14: Grewing & Mebold (1975)


The raw UV-data were calibrated, interactively flagged and Fast Fourier Transformed (FFT) using the NEWSTAR software developed at the NFRA in Dwingeloo. The UV points were weighted according to the local density of points in the UV plane and a Gaussian baseline taper was applied with a FWHM of 2293 (m) which attenuates the longest baseline by 50%. To deal with the frequency dependent antenna pattern, five antenna patterns were calculated for each data cube at a regular frequency separation thoughout the bandpass. Pixel sizes of 5 arcsec in RA and $\frac{5}{\sin(\delta)}$ arcsec in declination ensure an adequate sampling of the synthesized beam, $12^{\prime\prime}\times
12^{\prime\prime}/\sin(\delta)$.

After the FFT, the datacubes and antenna patterns were further processed using the Groningen Image Processing SYstem (GIPSY). Several channels at the low and high velocity end of the bandpass were discarded because of their higher noise. As a result, there are 110 or 53 usable channels for a bandpass of 2.5 or 5 MHz respectively, except for the N3992 and N4111 fields which had 110 channels across a 5 MHz bandpass. All datacubes were smoothed to lower angular resolutions of $30^{\prime\prime}\times30^{\prime\prime}$ and $60^{\prime\prime}\times60^{\prime\prime}$. This facilitates the detection of extended low level HI emission and the identification of the "continuum'' channels which are free from line emission.

3.1 The radio continuum emission

The channels free from HI emission were averaged and the resulting continuum map was subtracted from all channels in the data cube. The residuals of the frequency dependent grating rings were only a minor fraction of the noise in the channels containing the line emission. The dirty continuum maps were cleaned (Högbom 1974) down to 0.3$\sigma$. The clean-components were restored with a Gaussian beam of similar FWHM as the synthesized beam. When radio continuum emission from a galaxy was detected, its continuum flux was determined from the cleaned continuum map. In cases of no detection, an upper limit for extended emission was derived by calculating the rms scatter in the flux values obtained by integrating the noise in each of fifteen elliptical areas enclosed by the 25th mag blue isophote and positioned at various emission-free regions in the map.

3.2 The HI channel maps and the global HI profiles

At all three spatial resolutions, the regions of HI emission were defined by the areas enclosed by the 2$\sigma$ contours in the "dirty'' 60 $^{\prime\prime}$ resolution maps. Grating rings and noise peaks above this level were removed manually. The selected regions were enlarged by moving their boundaries 1 armin outwards to account for possible emission in the sidelobes. The resulting masks vary from channel to channel in shape, size and position due to the rotation of the HI disk. These masks defined the regions that were cleaned down to 0.3$\sigma$ at all three spatial resolutions.

The clean-components were restored with a Gaussian beam of similar FWHMas the synthesized beam. The global HI profiles were derived by determining the primary beam corrected flux in each cleaned region. Since the size and shape of the clean masks vary as a function of velocity, the uncertainty in the flux densities at each velocity in the global HI profile varies as well. The noise on the global HI profile was determined by projecting each clean mask at nine different line-free positions in a channel map and integrating over each of them.

For further analysis, each profile was divided up in three equal velocity bins in which the peak fluxes $F^{\rm peak}_{\rm low}$, $F^{\rm peak}_{\rm mid}$and $F^{\rm peak}_{\rm high}$ were determined for the low, middle and high velocity bin respectively. These three peak fluxes were then used to classify a global profile shape according to:
Double peaked: $F^{\rm peak}_{\rm low}>F^{\rm peak}_{\rm mid}<F^{\rm peak}_{\rm high}$
Gaussian: $F^{\rm peak}_{\rm low}<F^{\rm peak}_{\rm mid}>F^{\rm peak}_{\rm high}$
Distorted: $F^{\rm peak}_{\rm low}<F^{\rm peak}_{\rm mid}<F^{\rm peak}_{\rm high}$
                or $F^{\rm peak}_{\rm low}>F^{\rm peak}_{\rm mid}>F^{\rm peak}_{\rm high}$
Boxy: $F^{\rm peak}_{\rm low}\approx F^{\rm peak}_{\rm mid}\approx F^{\rm peak}_{\rm high}$.
In case of a double peaked profile, the peak fluxes on both sides were considered separately when calculating the 20% and 50% levels. In all other cases, the overal peak flux was used. The four velocities $V_{\rm low}^{20\%}$, $V_{\rm low}^{50\%}$, $V_{\rm high}^{50\%}$ and $V_{\rm high}^{20\%}$ corresponding to these 20% and 50% levels were determined by linear interpolation between the data points, going from the center outward. In the few cases of non-monotonically decreasing edges, this procedure tends to slightly underestimate the widths. The widths are calculated according to

$W_{20}=V_{\rm high}^{20\%}-V_{\rm low}^{20\%}\ {\rm and} \
W_{50}=V_{\rm high}^{50\%}-V_{\rm low}^{50\%}$.


The systemic velocity is calculated according to

$V_{\rm sys}=0.25(V_{\rm low}^{20\%}+V_{\rm low}^{50\%}+V_{\rm high}^{50\%}+V_{\rm high}^{20\%}).$


Because in interferometric measurements some flux may be lost due to the missing short baselines, it is useful to compare the widths and flux densities from the WSRT profiles with those from published single dish observations. However, a meaningful comparison requires that the profile widths are all corrected in the same way for instrumental broadening. In general, the widths that are published by various authors were corrected for instrumental broadening using nearly as many different methods. Therefore, the published line widths had to be de-corrected first to ensure a uniformly applied correction. The de-corrected widths and integrated HI fluxes from the literature are compiled in Cols. (7)-(11) of Table 3 along with the results from this study in Cols. (2)-(6).
Column (1) gives the NGC or UGC numbers.
Columns (2, 3) and (7, 8) give the widths of the global profiles at the 20% levels and the formal uncertainties.
Columns (4) and (9) give the velocity resolutions of the observations.
Columns (5, 6) and (10, 11) contain the integrated HI fluxes derived from the global profiles.
Column (12) provides the references to the literature sources.
In case the authors suggest that the single dish profile of a particular galaxy may be confused and synthesis data on that galaxy do exist, these synthesis data are included as well and used in the following comparison. However, first it will be explained how the observed linewidths are corrected for the different instrumental resolutions.

3.2.1 Correcting ${\mathsfsl {W}}_{\mathsf 20}$ for instrumental broadening

The most widely used method to correct for broadening of the global HI profiles due to a finite instrumental velocity resolution was provided by Bottinelli et al. (1990). For the widths at the 20% and 50% levels of the peak flux they advocate the following linear relations:

$W_{20,R}=W_{20}-\delta W_{20}=W_{20}-0.55R$
$W_{50,R}=W_{50}-\delta W_{50}=W_{50}-0.13R$


where W20 is the observed linewidth and W20,R is the linewidth corrected for the instrumental velocity resolution R in km s-1. This empirical prescription is based on comparing linewidths obtained at different resolutions.

However, the correction method applied here deviates from Bottinelli et al.'s method and is based on more analytic considerations. It is easy to imagine that both edges of an intrinsic global profile, when chopped off at their peaks and glued together, approximate a Gaussian with dispersion $\sigma_0$. The width at the 20% level of this "true'' Gaussian is then given by

\begin{displaymath}W_{20,R} = \sigma_0\sqrt{8 \mbox{ln}(5)}.
\end{displaymath}

A spectral Hanning smoothing was applied to most of the WSRT observations presented in this paper. This smoothing function can also be approximated by a Gaussian with a FWHM equal to the instrumental velocity resolution R and has a dispersion $\sigma_R$

\begin{displaymath}\sigma_{R} = \frac{R}{\sqrt{8 \mbox{ln}(2)}}\cdot
\end{displaymath}

The dispersion $\sigma_{\rm c}$ of the convolved observed Gaussian is then given by

\begin{displaymath}\sigma_{\rm c} = \sqrt{ \sigma_0^2 + \sigma_R^2 }
\end{displaymath}

and the 20% line width of this convolved or observed Gaussian is given by

\begin{eqnarray*}W_{20} & = & \sigma_{\rm c} \sqrt{8\mbox{ln}(5)} \\
& = & \sqr...
...{ln}(5)}\cdot\sqrt{\sigma_0^2 + \frac{R^2}{8\mbox{ln}(2)} }\cdot
\end{eqnarray*}


So, at the 20% level, the intrinsic width W20,R is broadened to W20 by $\delta{W}$ given by

\begin{eqnarray*}\delta{W}_{20} & = & {W}_{20} - {W}_{20,R} \\
& = & \sqrt{8\mb...
...sqrt{1 + \frac{(R/\sigma_0)^2}{8\mbox{ln}(2)} } - 1
\right]\cdot
\end{eqnarray*}


The broadening $\delta W_{20}$ does not only depend on the instrumental resolution R but also on the steepness of the slopes of the edges of the profile, expressed by $\sigma_0$. Fitting Gaussians to the edges of a profile yields $\sigma_{\rm c}$ from which $\sigma_0$ can be calculated given the known value of $\sigma_R$. The equation above can be rewritten using $\sigma_{\rm c}$ instead which results in

\begin{displaymath}\delta{W}_{20} =
\sigma_{\rm c}\sqrt{8\mbox{ln}(2)}\left(\fra...
...sqrt{1-\frac{(R/\sigma_{\rm c})^2}{8\mbox{ln}(2)}}\right]\cdot
\end{displaymath}

However, no Gaussians were fitted to the edges of the new WSRT profiles. Instead it is assumed that the slopes of the edges of the profiles are more or less determined by the turbulent motion of the gas with a canonical velocity dispersion of $\sigma_0=10~{\rm km}\, {\rm s}^{-1}$. This results in

\begin{displaymath}\delta{W}_{20} = 35.8\cdot\left[\sqrt{1 + \left(\frac{R}{23.5}\right)^2} - 1 \right]
\end{displaymath}

and similarly for the 50% level

\begin{displaymath}\delta{W}_{50} = 23.5\cdot\left[\sqrt{1 + \left(\frac{R}{23.5}\right)^2} - 1 \right]\cdot
\end{displaymath}

The differences between Bottinelli et al.'s linear presciption and our corrections ( $\Delta\delta{W}=\delta{\rm W}^{Bot}-\delta{W}^{\rm our}$) are only minor and tabulated below for typical instrumental resolutions of the WSRT.

level $\Delta\delta W$
  - - - - - R (km s-1) - - - - -
  5.0 8.3 16.5 19.9 33.1
20% 2.0 2.4 1.2 0.2 -7.8
50% 0.2 -0.3 -3.1 -4.7 -12.8

The larger differences occur for the poorest resolutions at which only the broadest profiles were observed. Consequently, the differences are a negligible fraction of the line widths.

Figure 1 shows the comparison of the widths and integrated fluxes derived from the new WSRT global profiles and those from the literature. There are no significant systematic differences. The unweighted average difference in widths is $-0.9 \pm 2.1~{\rm km}\, {\rm s}^{-1}$ with a rms scatter of 14 km s-1. The unweighted average difference in integrated flux is $4.7\pm 3.5$ percent with a rms scatter of 25 percent. It can therefore be concluded that on average the WSRT results are in excellent agreement with the results from single dish observations.


  \begin{figure}
\par\includegraphics[width=8cm,clip]{fig1.ps}\end{figure} Figure 1: A comparison of the present WSRT results with pre-existing single dish and synthesis data from the literature

3.3 The total HI maps

As a next step, the total integrated HI maps were constructed from the cleaned datacubes. The clean-masks were used to define the regions with HI emission. Outside these regions, the pixels were set to zero and all the channels containing a non-zero area were added to build up the integrated column density map. This was then corrected for attenuation by the primary beam. Although the advantage of this procedure is a higher signal-to-noise ratio at a certain pixel in the HI map, the disadvantage is that the noise is no longer uniform across the map. As a result, the 3$\sigma$-contour level in an integrated HI map is not defined. Signal-to-noise maps have been made, however, using the prescription outlined in Appendix A and the average pixel value of all pixels with $2.75<(\frac{S}{N})<3.25$ was determined. This average value was adopted as the "3$\sigma$'' level for the column density.

3.4 The radial HI surface density profiles

The integrated column density maps were used to derive the radial HI surface density profiles by azimuthally averaging in concentric ellipses. The orientations and widths of the ellipses were the same as those of the projected tilted rings fitted to the HI velocity field (see Sect. 3.6.1). In the case of a warp with overlapping ellipses, the flux in the overlapping regions was proportionally assigned to each ellipse. The azimuthal averaging was done separately for the receding and approaching halves of each tilted ring to reveal possible asymmetries. Pixels in the HI map without any measured signal were set to zero. Finally, the entire radial profile was scaled by the total HI mass as derived from the global HI profile. No attempt was made to correct the profiles for the effect of beam smearing.

This method for extracting the surface density profiles from integrated HI maps breaks down for nearly edge-on systems; the highly inclined annuli with large major axis diameters could still pick up some flux along the minor axis due to beam smearing. In such cases, Lucy's (1974) iterative deprojection scheme as adapted and developed by Warmels (1988b) might be preferable.

Due to the complex noise structure of the integrated HI map, no attempt was made to estimate the errors on the radial HI surface density profiles.

3.5 The HI velocity fields

The HI data cubes were smoothed to velocity resolution of $\approx$ $19~{\rm km}\, {\rm s}^{-1}$ in order to obtain a good spectral signal-to-noise ratio. HI velocity fields were then constructed by fitting single Gaussians to the velocity profiles at each pixel. Initial estimates for the fits were given by the various moments of the profiles determined over the velocity range covered by the masks. Only those fits were accepted for which 1) the central velocity of the fitted Gaussian lies inside the masked volume, 2) the amplitude is larger than five times the rms noise in the profile and 3) the uncertainty in the central velocity is smaller than $\frac{1}{3}$ the velocity resolution.

Due to projection effects and beam smearing, the velocity profiles in highly inclined systems and in the central regions of galaxies may deviate strongly from a Gaussian shape. The exact shape depends on the spatial and kinematic distribution of the gas within a synthesized beam. Fitting single Gaussians to these usually skewed profiles results in an underestimate of the rotational velocity at that position. As a consequence, the gradients in the velocity field become shallower. There are several methods to correct for the effects of beam smearing. In the present cases, however, the signal-to-noise was in general too low to allow a useful application of these methods, and, since only a small number of systems were recognized as seriously affected, the HI velocity fields were not corrected for the effects of beam smearing.

3.6 Rotation curves

The rotation curves were derived in two ways; 1) by fitting tilted-rings to the velocity fields (Begeman 1987) and 2) by estimating the rotational velocities by eye from the position-velocity diagrams.

3.6.1 Using the velocity fields

The determination of the rotation curves from the velocity fields was done in three steps by fitting tilted rings to the velocity field (see Begeman 1987, 1989). The widths of the rings were set at $\frac{2}{3}$ of the width of the synthesized beam (i.e. $10^{\prime\prime}$, $20^{\prime\prime}$ or $40^{\prime\prime}$).

First, the systemic velocity and the dynamical center were determined. In this first step the inclination and position angles were the same for each ring and kept fixed at the values derived from the optical images. The systemic velocity, center and rotational velocity were fitted for each ring. All the points along the tilted ring were considered and weighted uniformly. In general, no significant trend as a function of radius could be detected for the systemic velocity and center. The adopted values were calculated as the average of all rings.

Second, the systemic velocity and center of rotation were kept fixed for each ring while the position angle, inclination and rotational velocity were fitted. All the points along the tilted ring were considered but weighted with cos($\theta$) where $\theta$ is the angle in the plane of the galaxy measured from the receding side. Hence, points along the minor axis have zero weight. While the position angle can be determined accurately, the inclination and rotational velocity are rather strongly correlated for inclinations below 60 degrees and above 80 degrees (Begeman 1989). As a result, the fitted inclinations can vary by a large amount from one ring to another. However, a possible trend in the inclination with radius due to a central bar or a warp can be detected. A change in inclination angle often goes together with a change in the more accurately determined position angle.

Third, the rotational velocity was fitted again for each ring while keeping the systemic velocity, center of rotation, inclination and position angle fixed. Again, all the points along the tilted ring were considered but weighted with cos($\theta$). The fixed values for the inclination and position angles were determined in the second step by averaging the solutions over all the rings or fixing a clear trend. For nearly edge-on galaxies, the inclinations determined in the second step were often overruled by higher values based on the clear presence of a dust lane (e.g. N4010, N4157, N4217) or the very thin distribution of gas in the column density maps (e.g. U6667). However, uncertainty in the inclinations of nearly edge-on systems does not significantly influence the amplitude of the rotational velocity.

The results of this 3-step procedure were used to construct a model velocity field. This model was subtracted from the actual observed velocity field to yield a map of the residual velocities. In some cases (e.g. N3769, N4051, N4088) this residual map shows significant systematic residuals, indicative of non-circular motion or a bad model fit due to a noisy observed velocity field. As a further check, the derived rotation curve is projected onto the position-velocity maps along the major and minor axis.

The errors on the inclination and position angles and the rotational velocity are formal errors. They do not include possible systematic uncertainties due to, for instance, the beam smearing.

3.6.2 Using the position-velocity diagrams

It has already been remarked (see Sect. 3.5) that beam smearing affects the determination of the velocity fields, especially in the central regions of galaxies and in highly inclined disks. As a consequence, the rotation curves derived from such velocity fields are underestimated as one can see from their projection on the XV-maps. In order to overcome this problem, the rotation curves were derived directly from the major axis XV-maps in a manner similar to that used for edge-on systems (cf. Sancisi & Allen 1979). This was done by two independent human neural networks trained to estimate the maximum rotational velocity from the asymmetric velocity profiles, taking into account the instrumental band- and beam-widths and the random gas motions. This was done for both the receding and approaching side of a galaxy. The rotation curves were then deprojected (also accounting for possible warps) by using the same position and inclination angles as fixed in the third step described in the previous section. In general, the average rotation curves derived from the XV-diagrams are in reasonable agreement with those obtained by the tilted ring fits. As expected, significant differences can only be noted for galaxies which are highly inclined or have a steeply rising rotation curve.

From the XV-diagrams it is clear that many galaxies have kinematic asymmetries in the sense that the rotation curve often rises more steeply on one side of a galaxy than on the other side (e.g. N3877, N3949). The rotation curves as derived from the velocity fields and XV-diagrams are tabulated in Table 4 for the approaching and receding parts separately. The adopted changes in inclination and position angles of N3718 and N4138 are motivated in the notes on the atlas pages of these galaxies. The uncertainties quoted in Table 4 are not 1-sigma Gaussian errors but rather reflect fiducial velocity ranges, based on the position-velocity diagrams.


 

 
Table 4: Rotation curves derived from velocity fields and XV-diagrams
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
U6399
10 25 12 7 25 10 7 25 75 141
20 44 10 7 49 7 7 46 75 141
30 61 12 7 61 7 5 61 75 141
40 70 7 5 69 5 5 70 75 141
50 77 7 5 78 3 5 78 75 141
60 82 10 5 84 5 5 83 75 141
70 84 5 5 - - - 84 75 141
80 86 5 5 - - - 86 75 141
90 88 5 5 - - - 88 75 141
U6446
10 39 8 8 23 10 10 31 51 188
20 49 8 8 61 8 10 55 51 188
30 57 5 5 65 5 8 61 51 188
40 63 5 5 65 5 8 64 51 188
50 69 8 5 65 5 5 67 51 188
60 71 5 5 70 5 5 70 51 188
70 75 5 5 72 5 5 74 51 188
80 79 8 5 77 5 5 78 51 188
90 81 8 5 81 5 5 81 51 188
100 81 5 5 80 5 5 81 51 188
110 81 5 5 82 5 5 81 51 189
120 82 8 5 83 5 8 82 51 191
131 82 8 5 84 5 8 83 51 193
142 83 8 8 86 8 8 85 51 195
153 83 8 8 86 8 8 84 51 197
164 82 11 11 85 8 11 83 51 199
176 80 11 11 - - - 80 51 201
N3726
40 112 10 7 92 12 10 102 53 195
60 131 7 7 119 10 10 125 53 195
80 144 5 5 146 7 10 145 53 195
100 156 5 5 172 5 7 164 53 195
120 154 7 7 171 5 7 162 53 195
140 155 7 5 166 7 7 160 53 195
160 152 7 7 159 5 7 156 53 195
183 145 10 7 148 5 5 147 57 188
256 157 8 8 159 6 6 158 72 180
316 169 9 12 - - - 169 75 179
344 169 9 12 - - - 169 75 179
373 167 15 15 - - - 167 75 179
N3769
20 89 13 10 86 20 10 88 70 149
40 103 10 8 109 13 10 106 70 149
60 112 8 8 119 8 8 116 70 149
80 120 8 8 130 8 10 125 70 149
100 123 5 8 129 5 8 126 70 149
120 124 5 8 122 5 8 123 70 150
141 120 5 5 115 8 8 118 70 152
166 120 8 10 110 8 10 115 70 155
196 122 14 17 - - - 122 70 158
364 121 10 10 - - - 121 70 167
396 118 10 10 - - - 118 70 167
426 113 11 11 - - - 113 70 168
U6667
10 27 5 5 27 7 7 27 89 89
20 43 2 2 47 5 5 45 89 89
30 55 5 5 59 7 5 57 89 89
40 64 2 5 74 5 5 69 89 89



 
Table 4: continued

Rad.
$V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)


U6667 (cont.)
50 73 5 5 82 5 5 77 89 89
60 78 5 5 84 5 7 81 89 89
70 82 2 5 87 5 5 84 89 89
80 83 2 5 87 5 5 85 89 89
90 83 5 5 89 5 5 86 89 89
N3877
10 35 10 10 40 15 15 38 76 37
20 81 10 10 80 15 15 80 76 37
30 129 10 10 113 15 12 121 76 37
40 150 8 8 134 12 12 142 76 37
50 157 8 8 149 10 10 153 76 37
60 161 8 8 159 8 8 160 76 37
70 163 8 8 163 8 8 162 76 37
80 164 8 8 171 5 5 167 76 37
90 163 8 8 174 8 8 169 76 37
100 164 8 8 177 8 5 171 76 37
110 165 8 8 176 8 5 171 76 37
120 165 8 8 174 10 8 170 76 37
130 166 10 10 171 10 10 169 76 37
N3893
20 140 10 10 150 10 10 145 49 345
40 175 10 10 173 10 10 174 49 345
60 191 10 10 197 10 7 194 49 345
80 192 7 7 189 10 7 191 49 346
101 192 10 8 181 8 8 186 47 351
125 194 8 11 182 8 11 188 45 362
151 190 10 13 184 10 16 187 43 371
176 179 11 15 - - - 179 41 377
198 161 15 12 190 19 19 176 39 379
218 153 12 12 181 24 24 167 37 380
233 148 21 17 - - - 148 36 381
N3917
10 21 5 5 28 7 5 24 80 257
20 45 5 5 54 7 5 50 80 257
30 69 7 7 78 7 7 74 80 257
40 99 7 5 103 5 7 101 80 257
50 102 5 5 113 5 5 107 80 257
60 108 5 5 122 5 5 115 80 257
70 118 5 5 128 5 7 123 80 257
80 127 5 5 134 5 7 130 80 257
90 133 5 5 134 5 5 134 79 257
100 137 7 5 136 5 5 136 78 257
110 137 7 5 136 5 5 137 77 257
120 137 5 5 136 5 5 136 77 257
130 137 5 5 137 5 5 137 76 257
140 137 5 5 138 5 5 137 75 257
150 137 5 5 - - - 137 75 257
160 138 5 5 - - - 138 74 257
170 137 8 8 - - - 137 73 257
N3949
10 58 10 10 79 14 14 68 55 298
20 106 10 7 141 7 7 123 55 298
30 138 7 10 152 7 7 145 55 298
40 150 5 7 155 10 12 152 55 298
50 156 7 7 159 7 14 157 55 297
60 161 5 5 161 10 24 161 55 295
70 165 7 7 165 7 34 165 55 294
81 - - - 169 7 44 169 55 293



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
N3953
40 178 7 10 184 15 10 181 62 13
60 200 10 10 207 10 7 203 62 13
80 214 7 10 219 7 7 217 62 13
100 218 7 10 227 10 7 223 62 13
120 219 7 7 229 10 7 224 62 13
140 222 7 7 224 10 10 223 62 13
160 229 10 7 218 7 10 224 62 13
175 234 10 7 - - - 234 62 13
180 - - - 215 10 10 215 62 13
N3972
10 24 5 5 55 10 7 40 77 297
20 68 7 7 78 7 7 73 77 297
30 86 12 10 93 7 7 89 77 297
40 101 10 7 103 5 7 102 77 297
50 111 7 5 110 5 7 110 77 297
60 117 7 5 116 5 7 116 77 297
70 122 5 5 124 7 7 123 77 297
80 129 5 5 131 5 7 130 77 297
86 131 7 7 - - - 131 77 297
90 - - - 134 5 7 134 77 297
100 - - - 134 5 5 134 77 297
U6917
20 60 5 5 59 5 5 59 56 123
30 71 5 8 72 5 5 71 56 123
40 86 8 5 83 8 5 85 56 123
50 96 8 8 91 5 5 94 56 123
60 98 5 5 97 5 5 98 56 123
70 100 5 5 100 5 5 100 56 123
80 101 8 5 101 5 5 101 56 123
90 105 5 5 102 5 5 103 56 123
100 110 5 5 101 5 8 105 56 123
110 116 7 7 104 5 7 110 57 123
120 - - - 111 5 7 111 60 124
U6923
11 41 6 9 - - - 41 65 341
23 54 6 6 - - - 54 65 341
34 70 6 6 76 9 6 73 65 341
44 80 6 6 77 6 6 78 65 344
53 - - - 79 5 5 79 65 347
61 - - - 81 5 5 81 65 350
U6930
20 58 12 10 52 12 12 55 32 39
40 88 10 7 83 12 10 85 32 39
60 94 7 7 94 10 10 94 32 39
80 98 7 7 100 7 7 99 32 39
100 102 7 7 105 7 7 103 32 39
120 105 7 7 109 7 7 107 32 39
140 107 7 7 110 7 7 109 32 39
150 - - - 110 7 7 110 32 39
160 108 7 7 - - - 108 32 39
180 108 7 7 - - - 108 32 39
190 108 7 7 - - - 108 32 39
N3992
80 253 7 10 244 10 12 249 56 248
120 264 7 10 265 7 12 264 56 248
160 273 7 10 272 7 7 272 56 248
200 274 7 7 268 7 10 271 56 248
240 273 7 7 256 7 7 264 56 248
280 - - - 242 7 7 242 56 248



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
N3992 (cont.)
320 247 7 7 242 7 7 244 56 248
360 241 7 7 242 10 10 241 56 248
400 237 7 10 - - - 237 56 248
U6940
10 19 5 5 18 5 5 18 79 315
20 41 5 5 34 5 8 37 79 315
U6962
10 50 20 15 75 12 10 62 37 359
20 107 10 7 106 10 7 106 37 359
30 129 7 7 126 7 7 128 37 359
40 142 7 7 145 10 7 144 37 359
50 155 7 7 163 10 10 159 37 359
60 171 7 7 - - - 171 37 359
N4010
0 34 15 15 -34 15 15 0 90 66
10 59 12 10 20 7 7 39 90 66
20 66 7 10 43 7 7 55 90 66
30 69 5 10 62 12 10 66 90 66
40 80 5 5 88 10 7 84 90 66
50 84 5 5 104 12 10 94 90 66
60 96 5 5 113 10 10 104 90 66
70 108 7 5 122 7 7 115 90 66
80 125 7 5 129 7 7 127 90 66
90 128 7 5 131 7 7 129 90 66
100 123 7 5 131 7 7 127 90 66
110 119 7 5 129 7 7 124 90 66
120 119 5 5 125 5 7 122 90 66
U6969
10 - - - 26 5 7 26 76 330
20 34 5 7 44 7 7 39 76 330
31 46 5 5 58 5 7 52 76 330
41 60 5 5 69 5 7 65 76 330
51 - - - 79 5 5 79 76 330
U6973
20 162 5 10 179 5 7 170 71 41
30 174 5 7 174 5 7 174 71 41
40 170 5 7 170 5 7 170 71 42
50 170 5 7 170 5 7 170 71 44
61 171 5 7 172 7 7 171 71 45
72 174 5 8 174 8 8 174 71 46
78 - - - 177 10 10 177 71 47
84 178 5 8 - - - 178 71 47
90 180 5 10 - - - 180 71 48
U6983
20 58 10 10 56 10 7 57 49 270
30 93 7 5 82 7 7 87 49 270
40 87 7 7 97 10 7 92 49 270
50 84 7 7 103 7 7 94 49 270
60 93 5 5 103 7 7 98 49 270
70 94 5 5 105 7 7 100 49 270
80 95 5 5 108 5 5 102 49 270
90 100 7 7 113 5 5 107 49 270
100 105 7 7 112 5 5 108 49 270
110 111 7 7 110 5 5 111 49 270
120 113 7 7 112 5 5 113 49 270
130 111 7 7 110 7 7 111 49 270
140 107 7 7 109 7 10 108 49 270
145 102 10 10 - - - 102 49 270
150 - - - 109 7 10 109 49 270



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
U6983 (cont.)
160 - - - 108 10 10 108 49 270
170 - - - 108 10 10 108 49 270
180 - - - 109 12 12 109 49 270
N4051
20 - - - 121 15 15 121 49 310
25 123 15 15 - - - 123 49 310
40 119 12 10 114 12 10 116 49 310
60 146 10 10 133 10 10 140 49 310
80 163 7 10 156 10 10 160 49 310
100 158 7 7 165 7 7 162 49 310
115 - - - 170 7 7 170 49 310
120 154 7 7 - - - 154 49 310
140 153 10 10 - - - 153 49 310
N4085
10 35 10 5 50 15 10 42 82 256
20 71 7 5 89 10 10 80 82 256
31 110 12 7 113 7 7 112 82 256
41 126 7 5 127 7 7 127 82 256
51 131 7 7 130 7 5 130 82 256
61 134 7 7 133 5 5 133 82 256
71 136 7 7 - - - 136 82 256
N4088
20 92 15 15 78 20 15 85 69 230
40 138 10 15 135 20 10 136 69 230
60 156 7 12 168 15 10 162 69 230
80 167 7 10 191 10 10 179 69 230
100 177 7 10 187 10 7 182 69 230
120 185 7 12 174 10 10 179 69 230
140 187 7 12 162 7 7 174 69 230
160 185 12 12 158 7 7 171 69 230
180 175 10 10 161 7 7 168 69 230
200 171 7 7 160 10 7 165 69 230
210 - - - 156 10 7 156 69 229
221 171 10 7 - - - 171 69 227
246 174 8 8 - - - 174 69 224
N4100
20 67 15 15 - - - 67 73 345
30 102 15 20 139 15 7 121 73 345
40 138 12 12 159 10 7 148 73 345
50 164 7 10 173 10 7 168 73 345
60 177 10 7 188 10 7 182 73 345
70 188 7 7 193 7 7 191 73 345
80 193 7 7 195 10 7 194 73 345
90 195 10 7 195 10 7 195 73 345
100 193 5 7 194 7 7 193 73 345
110 192 5 5 192 7 5 192 73 345
120 193 5 5 191 5 5 192 73 345
130 192 5 5 190 7 7 191 73 345
140 188 7 7 189 7 5 189 73 345
150 183 7 10 187 7 5 185 73 345
160 180 7 7 185 5 5 182 73 345
170 175 10 10 183 10 7 179 72 346
180 172 7 10 181 10 7 177 71 346
190 168 10 10 179 10 8 174 71 346
200 - - - 178 10 8 178 70 346
210 - - - 177 8 5 177 70 347
220 160 5 8 178 10 10 169 69 347
230 158 5 8 - - - 158 69 347
241 158 8 8 - - - 158 68 348



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
N4100 (cont.)
251 158 8 10 - - - 158 68 348
261 159 10 8 - - - 159 67 348
N4102
20 179 12 12 184 12 12 181 56 39
30 177 12 10 181 10 12 179 56 39
40 174 12 10 178 10 10 176 56 39
50 - - - 178 15 10 178 56 39
N4157
20 66 18 14 127 23 14 96 82 63
40 142 18 14 173 14 14 157 82 63
60 192 9 14 191 11 14 192 82 63
80 202 7 9 201 11 11 201 82 63
100 198 11 11 204 9 9 201 82 63
120 192 9 9 197 9 9 195 82 63
140 191 9 9 188 9 7 190 82 63
160 191 9 9 181 9 9 186 82 63
180 192 9 9 176 9 9 184 82 63
200 191 9 9 173 11 11 182 82 63
220 190 7 7 173 14 9 181 82 63
240 189 9 7 177 11 9 183 82 63
260 189 11 7 181 9 9 185 82 63
280 186 11 7 - - - 186 82 63
300 186 11 11 - - - 186 82 63
320 185 14 14 - - - 185 82 63
340 185 14 14 - - - 185 82 63
N4183
10 56 12 10 38 15 10 47 82 346
20 71 7 7 61 12 10 66 82 346
30 78 7 7 74 10 7 76 82 346
40 88 7 7 84 10 7 86 82 346
50 97 7 7 97 7 7 97 82 346
60 100 7 7 99 7 7 99 82 346
70 103 7 7 103 7 7 103 82 346
80 106 7 7 107 7 7 107 82 346
90 110 7 7 113 7 7 111 82 346
100 112 7 7 117 10 10 114 82 346
110 112 7 7 118 10 10 115 82 346
120 108 7 7 114 10 7 111 82 346
130 108 7 7 113 10 7 110 82 347
141 111 7 7 112 7 7 111 82 347
151 108 7 5 110 7 7 109 82 347
161 106 5 5 109 7 7 108 82 347
172 109 7 7 109 7 7 109 82 347
183 112 7 7 110 7 7 111 82 348
194 108 5 8 111 8 8 110 82 348
205 106 5 8 111 8 8 109 82 348
217 107 7 8 112 8 8 110 82 348
229 - - - 112 10 10 112 82 348
241 - - - 113 13 10 113 82 349
N4217
10 38 10 10 57 14 12 48 86 230
20 82 10 12 116 14 10 99 86 230
30 145 10 10 148 14 10 146 86 230
40 162 7 10 165 10 10 164 86 230
50 176 7 10 172 7 10 174 86 230
60 176 7 10 175 10 7 175 86 230
70 189 7 10 179 10 10 184 86 230
80 188 7 10 182 10 10 185 86 230
90 187 5 10 188 12 10 188 86 230



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
N4217 (cont.)
100 188 7 10 192 12 12 190 86 230
110 191 7 10 191 10 10 191 86 230
120 192 7 7 189 10 7 191 86 230
130 191 10 7 187 10 7 189 86 230
140 187 10 7 185 12 10 186 86 230
150 183 10 7 183 10 10 183 86 230
160 180 12 7 178 10 10 179 86 230
170 177 10 10 177 10 12 177 86 230
181 178 12 12 177 10 14 177 86 230
191 178 12 12 - - - 178 86 230
N4389
10 30 8 8 25 10 8 27 50 277
20 56 10 8 50 13 8 53 50 277
31 70 13 8 69 10 8 69 50 277
41 79 13 8 88 8 8 84 50 277
51 92 10 10 99 8 8 96 50 277
61 - - - 110 8 8 110 50 277
Rotation curves derived from XV-diagrams only.
N3718
40 228 10 10 228 10 10 228 76 114
80 228 10 10 228 10 10 228 80 130
120 228 10 10 228 10 10 228 84 143
160 228 10 10 228 10 10 228 90 162
200 228 10 10 228 10 10 228 85 175
240 220 10 10 235 10 10 228 80 186
280 225 10 10 239 10 10 232 75 195
320 240 10 10 245 10 10 242 70 196
360 245 10 10 242 10 10 244 65 196
400 235 10 10 240 10 10 237 65 194
420 227 10 10 - - - - 65 194
N3729
20 118 34 24 138 12 10 128 48 164
40 157 17 12 141 12 12 149 48 164
50 - - - 144 10 10 144 48 164
60 151 12 10 - - - 151 48 164
U6773
10 28 10 7 34 10 7 31 60 341
20 38 7 7 48 7 5 43 60 341
30 46 5 5 44 7 7 45 60 341
40 47 5 5 44 10 7 45 60 341
U6818
10 27 7 7 20 10 7 23 79 77
20 28 10 7 28 7 5 28 79 77
30 31 7 5 43 7 5 37 79 77
40 43 7 5 53 7 5 48 79 77
50 66 7 7 61 7 5 63 79 77
60 77 7 10 66 7 5 71 79 77
70 68 7 5 - - - 68 79 77
80 74 7 5 - - - 74 79 77
N3985
0 8 15 10 -8 15 10 0 53 70
10 41 10 7 37 12 7 39 53 70
20 60 7 10 89 15 7 75 53 70
25 68 10 10 - - - 68 53 70
30 - - - 93 7 7 93 53 70
U6894
10 28 7 7 28 12 10 28 89 269
20 45 7 7 45 7 7 45 89 269



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
U6894 (cont.)
30 56 7 5 56 5 5 56 89 269
40 62 5 5 63 7 7 63 89 269
N4013
65 - - - 198 10 10 198 90 245
73 - - - 195 5 5 195 90 245
82 193 5 5 195 3 3 194 90 245
91 195 4 4 195 3 3 195 90 245
99 195 3 3 195 3 3 195 90 245
108 195 3 3 193 4 4 195 90 245
117 196 3 3 185 5 5 192 90 245
125 195 3 3 178 5 5 188 90 245
134 190 4 4 178 8 8 186 90 245
143 190 4 4 - - - 186 90 245
151 188 5 5 - - - 186 90 245
160 187 6 6 - - - 185 90 245
168 179 10 10 - - - 180 90 243
177 163 8 8 - - - 163 90 240
186 161 6 6 - - - 162 90 238
194 162 5 5 - - - 164 90 236
203 164 5 5 170 5 5 166 90 235
212 164 6 6 168 5 5 166 90 233
220 165 8 8 166 5 5 166 90 232
229 165 7 7 166 5 5 166 90 230
238 169 5 5 168 5 5 168 90 229
246 173 5 5 - - - 172 90 228
255 173 5 5 - - - 173 90 226
264 172 5 5 - - - 171 90 225
272 169 6 6 170 5 5 170 90 224
281 162 10 10 172 5 5 172 90 224
289 - - - 174 5 5 173 90 223
298 - - - 176 5 5 176 90 222
307 - - - 178 5 5 178 90 221
315 - - - 180 6 6 180 90 221
324 - - - 180 8 8 180 90 220
333 - - - 180 5 5 180 90 219
341 - - - 180 5 5 180 90 219
350 - - - 178 5 5 178 90 218
359 - - - 174 5 5 174 90 218
367 - - - 170 10 10 170 90 218
U7089
10 25 7 7 17 7 5 21 89 215
20 38 5 5 35 7 7 36 89 215
30 45 5 5 42 7 7 43 89 215
40 51 7 7 51 5 5 51 89 215
50 57 7 5 62 5 5 60 89 215
60 63 10 5 66 5 5 65 89 215
70 66 7 5 69 5 5 68 89 215
75 - - - 73 7 7 73 89 215
80 70 7 5 - - - 70 89 215
U7089 (cont.)
90 74 7 5 - - - 74 89 215
100 78 7 5 - - - 78 89 215
105 79 7 7 - - - 79 89 215
U7094
20 32 5 5 32 5 5 32 72 39
40 36 7 5 36 7 5 36 72 39
60 - - - 35 7 5 35 72 39



 
Table 4: continued
Rad. $V^{\rm app}_{\rm rot}$ $\pm$ $V^{\rm rec}_{\rm rot}$ $\pm$ $V^{\rm ave}_{\rm rot}$ i PA
( $^{\prime\prime}$) - - - km s-1 - - - - - - km s-1 - - - km s-1 ($^\circ$) ($^\circ$)
N4138
30 178 19 34 181 12 12 179 53 151
60 191 10 10 200 10 10 195 53 151
90 181 10 10 181 15 20 181 53 147
122 - - - 162 26 15 162 51 143
154 145 14 14 145 14 14 145 48 140
184 - - - 147 18 18 147 43 138
213 - - - 150 21 21 150 35 138
N4218
10 51 10 7 70 12 10 60 55 316
20 83 10 5 62 12 10 73 55 316



next previous
Up: The Ursa Major cluster

Copyright ESO 2001