next previous
Up: Accretion discs models with


Appendix B: Criterion for the thermal instability

Setting $\tau= \kappa_{\rm R} \Sigma + 8 / 3 \, \kappa_{\rm
P} \Sigma + 4/\sqrt{3}$, and differentiating Eq. (A.6) while keeping $\Sigma$ constant, we obtain

 
$\displaystyle \left(\frac{\partial \ln Q^-}{\partial \ln T}\right)_{\Sigma,\Omega}$ = $\displaystyle 4 - \frac{1}{\tau} \left[ \tau_{\rm R} b_{\rm R} -
\frac{8 b_{\rm P} }{3 \, \tau_{\rm P}} \right]$  
    $\displaystyle - \frac{1}{\tau} \left[ \tau_{\rm R} a_{\rm R} -
\frac{8 a_{\rm P...
...\right] \left(\frac{\partial \ln
\rho
}{\partial \ln T}\right)_{\Sigma,\Omega},$ (B.1)

where $\tau_{\rm R} = \kappa_{\rm R} \Sigma$ and $\tau_{\rm P}
= \kappa_{\rm P} \Sigma$ are the total Rosseland and Planck optical thicknesses respectively, and

\begin{eqnarray*}a_{\rm R}=\left(\frac{\partial \ln \kappa_R}{\partial \ln
\rho}...
...eft(\frac{\partial \ln \kappa_P}{\partial \ln
T}\right)_{\rho} .
\end{eqnarray*}


Note that this expression does not depend on the actual viscosity prescription. For Thompson scattering, we have simply $a_{\rm R} =
b_{\rm R} = a_{\rm P} = b_{\rm P} =0$, and for free-free opacity, $a_{\rm R} =
a_{\rm P}=1$ and $b_{\rm R} = b_{\rm P} = -\frac{7}{2}$. For a combination of both sources, we have $a_{\rm R} = a_{\rm P}=x$ and $b_{\rm R} =
b_{\rm P} = -\frac{7}{2}x$ where $x \equiv \kappa_{\rm
ff} / (\kappa_{\rm ff}+\sigma_{\rm T})$.

To compute the derivative $\left(\partial \ln \rho / \partial \ln T
\right)_{\Sigma,\Omega}$, we use the two different expressions of the total pressure at the midplane. First, by differentiation of Eq. (A.2), keeping $\Sigma$ and $\Omega$ constant, we have

 \begin{displaymath}\left( \frac{ \partial \ln P }{\partial \ln T} \right)_{\Sigm...
... \partial \ln \rho }{\partial \ln
T} \right)_{\Sigma,\Omega} .
\end{displaymath} (B.2)

Note that $(\partial \ln \rho / \partial \ln T)_{\Omega,\Sigma}$ is always negative. Second, from Eq. (A.3) which is written
$\displaystyle P = P_{\rm g} + \frac{Q^-}{c} \left( \frac{\tau_{\rm R} }{4} +
\frac{1}{\sqrt{3}}\right)$     (B.3)

and setting $\chi_\rho^{\rm g}=\left(\partial \ln P_{\rm g} / \partial
\ln {\rm T} \right)_{\rho}$, $\chi_{\rm T}^{\rm g}=\left( \partial \ln P_{\rm g} /
\partial \ln \rho \right)_{\rm T}$ and $\tilde{\beta}=P_{\rm g}/P$, we have
 
$\displaystyle \left( \frac{ \partial \ln P }{\partial \ln T} \right)_{\Sigma,\Omega}$ = $\displaystyle \left[ \tilde{\beta} \chi_{\rm T}^{\rm g} + \left(1-
\tilde{\beta}\right) a_{\rm R} \frac{\tau_{\rm R}}{\tau_{\rm R} +
\frac{4}{\sqrt{3}}} \right]$ (B.4)
    $\displaystyle \times \left( \frac{ \partial \ln \rho }{\partial
\ln T} \right)_{\Sigma,\Omega}
+ \tilde{\beta}\chi_\rho^{\rm g} +
\left(1-\tilde{\beta}\right)$  
    $\displaystyle \times \frac{\tau_{\rm R}}{\tau_{\rm R} +
\frac{4}{\sqrt{3}}} b_{...
... \right)
\left(\frac{\partial \ln Q^- }{\partial \ln T}\right)_{\Sigma,\Omega}.$  

Combining now Eqs. (B.2) and (B.4), we find
 
    $\displaystyle -\left( \frac{ \partial \ln \rho }{\partial \ln T}
\right)_{\Sigm...
...ght) a_{\rm R}
\frac{\tau_{\rm R}}{\tau_{\rm R} + \frac{4}{\sqrt{3}}} \right] =$  
    $\displaystyle \tilde{\beta}\chi_\rho^{\rm g} + \left(1-\tilde{\beta}\right)
\fr...
...\right) \left(\frac{\partial \ln Q^- }{\partial
\ln
T}\right)_{\Sigma,\Omega} .$  
      (B.5)

Finally, from Eqs. (B.1) and (B.5) and after rearrangement
 
$\displaystyle \left(\frac{\partial \ln \rho }{\partial \ln
T}\right)_{\Sigma,\Omega}$ = $\displaystyle \left[4(1-\tilde{\beta}) -(1-
\tilde{\beta}) \frac{\tau_{\rm R} b_{\rm R} - \frac{8 \, b_{\rm P}
}{3 \, \tau_{\rm P}}}{\tau} \right.$  
    $\displaystyle \left. + \tilde{\beta} \chi_\rho^{\rm g} + (1-
\tilde{\beta}) \frac{\tau_{\rm R}}{\tau_{\rm R} + \frac{4}{\sqrt{3}}}
b_{\rm R} \right]$  
    $\displaystyle \times \left[ (1-\tilde{\beta}) \frac{\tau_{\rm R} a_{\rm R} -
\f...
..._{\rm P} }{3 \, \tau_{\rm P}}}{\tau} - \left(
\frac{1}{1+\zeta} \right. \right.$  
    $\displaystyle \left. \left. + \tilde{\beta} \chi_{\rm T}^{\rm g} + \left(1-
\ti...
... R} \frac{\tau_{\rm R}}{\tau_{\rm R} +
\frac{4}{\sqrt{3}} } \right)\right]^{-1}$ (B.6)

and so Eq. (B.1) becomes
 
$\displaystyle \left(\frac{\partial \ln Q^-}{\partial \ln T}\right)_{\Sigma,\Omega}$ = $\displaystyle \left[ \tilde{\beta} \chi_\rho^{\rm g} + \left(1-
\tilde{\beta}\right) \frac{\tau_{\rm R}}{\tau_{\rm R} +
\frac{4}{\sqrt{3}}} b_{\rm R} \right.$  
    $\displaystyle \left. + \left( \frac{1}{1+\zeta} +
\tilde{\beta} \chi_{\rm T}^{\rm g} + \left(1-\tilde{\beta}\right) \right. \right.$  
    $\displaystyle \left. \left. \times a_{\rm R}
\frac{\tau_{\rm R}}{\tau_{\rm R} +...
...u_{\rm R} a_{\rm R} - \frac{8 \, a_{\rm P} }{3 \,
\tau_{\rm P}}}\right) \right]$  
    $\displaystyle \times \left[\frac{\tau }{ \tau_{\rm R} a_{\rm R} - \frac{8 \,
a_...
...\left( \frac{1}{1+\zeta} +
\tilde{\beta} \chi_{\rm T}^{\rm g} + \right. \right.$  
    $\displaystyle \left. \left. \times \left(1-\tilde{\beta}\right) a_{\rm R}
\frac...
...R}}{\tau_{\rm R} + \frac{4}{\sqrt{3}} } \right) +
\tilde{\beta} -1\right]^{-1}.$  
      (B.7)

It is then easy to derive from Eq. (B.7) the following asymptotic expressions:


next previous
Up: Accretion discs models with

Copyright ESO 2001