EDP Sciences
Free Access
Volume 430, Number 3, February II 2005
Page(s) 1133 - 1138
Section Planets and planetary systems
DOI https://doi.org/10.1051/0004-6361:20041692

A&A 430, 1133-1138 (2005)
DOI: 10.1051/0004-6361:20041692

Formation of giant planets in disks with different metallicities

K. Kornet1, P. Bodenheimer2, M. Rózyczka1 and T. F. Stepinski3

1  Nicolaus Copernicus Astronomical Center, Bartycka 18, Warsaw, 00-716, Poland
    e-mail: [kornet;mnr]@camk.edu.pl
2  UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
    e-mail: peter@ucolick.org
3  Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058, USA
    e-mail: tom@lpi.usra.edu

(Received 20 July 2004 / Accepted 20 September 2004)

We present the first results from simulations of processes leading to planet formation in protoplanetary disks with different metallicities. For a given metallicity, we construct a two-dimensional grid of disk models with different initial masses and radii ( M0R0). For each disk, we follow the evolution of gas and solids from an early evolutionary stage, when all solids are in the form of small dust grains, to the stage when most solids have condensed into planetesimals. Then, based on the core accretion - gas capture scenario, we estimate the planet-bearing capability of the environment defined by the final planetesimal swarm and the still evolving gaseous component of the disk. We define the probability of planet-formation,  $P_{\rm p}$, as the normalized fractional area in the ( M0$\log R_0$) plane populated by disks that have formed planets inside 5 AU. With such a definition, and under the assumption that the population of planets discovered at  R < 5 AU is not significantly contaminated by planets that have migrated from  R > 5 AU, our results agree fairly well with the observed dependence between the probability that a star harbors a planet and the star's metal content. The agreement holds for the disk viscosity parameter  $\alpha$ ranging from  10-3 to  10-2, and it becomes much poorer when the redistribution of solids relative to the gas is not allowed for during the evolution of model disks.

Key words: accretion, accretion disks -- stars: planetary systems: protoplanetary disks -- stars: planetary systems: formation

© ESO 2005

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.