Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 4 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201424164 | |
Published online | 21 June 2016 |
Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams
IUCAA, PO Bag 4, Ganeshkhind, 411007 Pune, India
e-mail: sanjit@iucaa.in
Received: 8 May 2014
Accepted: 21 April 2016
Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients All20 and Al-2l20>. Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of “throwing the baby out with the bathwater”.
Key words: cosmic background radiation / cosmology: observations / methods: data analysis
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.