EDP Sciences
Free access
Issue A&A
Volume 493, Number 2, January II 2009
Page(s) L21 - L25
Section Letters
DOI http://dx.doi.org/10.1051/0004-6361:200811325
Published online 11 December 2008



A&A 493, L21-L25 (2009)
DOI: 10.1051/0004-6361:200811325

Letter

A probable giant planet imaged in the $\mathsf{\beta}$ Pictoris disk

VLT/NaCo deep L $\mathsf{'}$-band imaging
A.-M. Lagrange1, D. Gratadour2, G. Chauvin1, T. Fusco3, D. Ehrenreich1, D. Mouillet1, G. Rousset2, 3, D. Rouan2, F. Allard4, É. Gendron2, J. Charton1, L. Mugnier3, P. Rabou1, J. Montri3, and F. Lacombe2

1  Laboratoire d'Astrophysique de l'Observatoire de Grenoble, Université Joseph Fourier, CNRS (UMR 5571), BP 53, 38041 Grenoble, France
    e-mail: anne-marie.lagrange@obs.ujf-grenoble.fr
2  Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, CNRS (UMR 8109), Université Pierre et Marie Curie, Université Paris-Diderot, 5 place Jules Janssen, 92190 Meudon, France
3  Office National d'Études et de Recherches Aérospatiales, 29 avenue de la Division Leclerc, 92322 Châtillon, France
4  Centre de Recherche Astronomique de Lyon, CNRS (UMR 5574), Université Claude Bernard, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France

Received 10 November 2008 / Accepted 18 November 2008

Abstract
Context. Since the discovery of its dusty disk in 1984, $\beta$ Pictoris has become the prototype of young early-type planetary systems, and there are now various indications that a massive Jovian planet is orbiting the star at ~10 AU. However, no planets have been detected around this star so far.
Aims. Our goal was to investigate the close environment of $\beta$ Pic, searching for planetary companion(s).
Methods. Deep adaptive-optics L'-band images of $\beta$ Pic were recorded using the NaCo instrument at the Very Large Telescope.
Results. A faint point-like signal is detected at a projected distance of $\simeq$8 AU from the star, within the northeastern extension of the dust disk. Various tests were made to rule out possible instrumental or atmospheric artefacts at a good confidence level. The probability of a foreground or background contaminant is extremely low, based in addition on the analysis of previous deep HST images. Its L'=11.2 apparent magnitude would indicate a typical temperature of ~1500 K and a mass of ~8  $M_{\rm Jup}$. If confirmed, it could explain the main morphological and dynamical peculiarities of the $\beta$ Pic system. The present detection is unique among A-stars by the proximity of the resolved planet to its parent star. Its closeness and location inside the $\beta$ Pic disk suggest a formation process by core accretion or disk instabilities rather than binary-like formation processes.


Key words: instrumentation: adaptive optics -- stars: early-type -- stars: planetary systems -- stars: individual: $\beta$ Pic



© ESO 2009

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)