EDP Sciences
Free access
Issue A&A
Volume 484, Number 1, June II 2008
Page(s) L5 - L8
Section Letters
DOI http://dx.doi.org/10.1051/0004-6361:200809689
Published online 28 April 2008

A&A 484, L5-L8 (2008)
DOI: 10.1051/0004-6361:200809689


Intense mass loss from C-rich AGB stars at low metallicity?

L. Mattsson, R. Wahlin, S. Höfner, and K. Eriksson

Dept. Physics and Astronomy, Div. of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala, Sweden
    e-mail: mattsson@astro.uu.se

Received 29 February 2008 / Accepted 15 April 2008

We argue that the energy injection of pulsations may be of greater importance to the mass-loss rate of AGB stars than metallicity, and that the mass-loss trend with metallicity is not as simple as sometimes assumed. Using our detailed radiation hydrodynamical models that include dust formation, we illustrate the effects of pulsation energy on wind properties. We find that the mass-loss rate scales with the kinetic energy input by pulsations as long as a dust-saturated wind does not occur, and all other stellar parameters are kept constant. This includes the absolute abundance of condensible carbon (not bound in CO), which is more relevant than keeping the ${\rm C/O}$-ratio constant when comparing stars of different metallicity. The pressure and temperature gradients in the atmospheres of stars, become steeper and flatter, respectively, when the metallicity is reduced, while the radius where the atmosphere becomes opaque is typically associated with a higher gas pressure. This effect can be compensated for by adjusting the velocity amplitude of the variable inner boundary (piston), which is used to simulate the effects of pulsation, to obtain models with comparable kinetic-energy input. Hence, it is more relevant to compare models with similar energy-injections than of similar velocity amplitude. Since there is no evidence for weaker pulsations in low-metallicity AGB stars, we conclude that it is unlikely that low-metallicity C-stars have lower mass-loss rates, than their more metal-rich counterparts with similar stellar parameters, as long as they have a comparable amount of condensible carbon.

Key words: stars: AGB and post-AGB -- stars: atmospheres -- stars: carbon -- stars: mass-loss -- hydrodynamics -- radiative transfer

© ESO 2008

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)