EDP Sciences
Free access
Issue
A&A
Volume 478, Number 1, January IV 2008
Page(s) 155 - 162
Section Interstellar and circumstellar matter
DOI http://dx.doi.org/10.1051/0004-6361:20078328


A&A 478, 155-162 (2008)
DOI: 10.1051/0004-6361:20078328

Accretion funnels onto weakly magnetized young stars

N. Bessolaz1, C. Zanni1, J. Ferreira1, R. Keppens2, 3, 4, and J. Bouvier1

1  Laboratoire d'Astrophysique de Grenoble, Université Joseph Fourier, CNRS UMR5571, France
2  Centre for Plasma Astrophysics, K.U. Leuven, Belgium
3  FOM Institute for Plasma Physics, Rijnhuizen, The Netherlands
4  Astronomical Institute, Utrecht University, The Netherlands

(Received 20 July 2007 / Accepted 11 November 2007)

Abstract
Aims. We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star.
Methods. New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed.
Results. The analytical criterion derived allows to predict a priori the position of the truncation radius from a non perturbative accretion disc model. Accretion funnels are found to be robust features which occur below the co-rotation radius, where the stellar poloidal magnetic pressure becomes both at equipartition with the disc thermal pressure and is comparable to the disc poloidal ram pressure. We confirm the results of Romanova et al. (2002, ApJ, 578, 420) and find accretion funnels for stellar dipole fields as low as 140 G in the low accretion rate limit of 10-9 $M_\odot$ yr-1. With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc.
Conclusions. Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most T Tauri stars ($\dot M$ ~ 10-8 $M_\odot$ yr-1) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.


Key words: accretion, accretion disks -- magnetohydrodynamics (MHD) -- methods: numerical -- stars: pre-main sequence



© ESO 2008

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.