EDP Sciences
Free access
Volume 478, Number 1, January IV 2008
Page(s) 71 - 81
Section Cosmology (including clusters of galaxies)
DOI http://dx.doi.org/10.1051/0004-6361:20077118

A&A 478, 71-81 (2008)
DOI: 10.1051/0004-6361:20077118

Geometrical tests of cosmological models

III. The Cosmology-evolution diagram at z = 1
C. Marinoni1, A. Saintonge2, T. Contini3, C. J. Walcher4, R. Giovanelli2, M. P. Haynes2, K. L. Masters5, O. Ilbert4, A. Iovino6, V. Le Brun4, O. Le Fevre4, A. Mazure4, L. Tresse4, J.-M. Virey1, S. Bardelli7, D. Bottini8, B. Garilli8, G. Guzzo9, D. Maccagni8, J. P. Picat3, R. Scaramella9, M. Scodeggio8, P. Taxil1, G. Vettolani10, A. Zanichelli10, and E. Zucca7

1  Centre de Physique Théorique (Centre de Physique Théorique is UMR 6207 - "Unité Mixte de Recherche" of CNRS and of the Universities "de Provence", "de la Méditerranée" and "du Sud Toulon-Var" - Laboratory affiliated to FRUMAM (FR 2291).) , CNRS-Université de Provence, Case 907, 13288 Marseille, France
    e-mail: marinoni@cpt.univ-mrs.fr
2  Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
3  Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées, UMR 5572, 31400 Toulouse, France
4  Laboratoire d'Astrophysique de Marseille, UMR 6110, CNRS Université de Provence, 13376 Marseille, France
5  Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02143, USA
6  INAF-Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy
7  INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, Bologna, Italy
8  IASF-INAF, via Bassini 15, 20133 Milano, Italy
9  INAF-Osservatorio Astronomico di Brera, via Bianchi 46, 23807 Merate, Italy
10  IRA-INAF, via Gobetti, 101, 40129 Bologna, Italy

(Received 17 January 2007 / Accepted 6 September 2007)

The rotational velocity of distant galaxies, when interpreted as a size (luminosity) indicator, may be used as a tool to select high redshift standard rods (candles) and probe world models and galaxy evolution via the classical angular diameter-redshift or Hubble diagram tests. We implement the proposed testing strategy using a sample of 30 rotators spanning the redshift range 0.2 < z < 1 with high resolution spectra and images obtained by the VIMOS/VLT Deep Redshift Survey (VVDS) and the Great Observatories Origins Deep Survey (GOODs). We show that by applying at the same time the angular diameter-redshift and Hubble diagrams to the same sample of objects (i.e. velocity selected galactic discs) one can derive a characteristic chart, the cosmology-evolution diagram, mapping the relation between global cosmological parameters and local structural parameters of discs such as size and luminosity. This chart allows to put constraints on cosmological parameters when general prior information about discs evolution is available. In particular, by assuming that equally rotating large discs cannot be less luminous at z = 1 than at present $(M(z=1) \lesssim M(0))$, we find that a flat matter dominated cosmology $(\Omega_{\rm m}=1)$ is excluded at a confidence level of $2 \sigma$ and an open cosmology with low mass density $(\Omega_{\rm m} \sim 0.3)$ and no dark energy contribution $(\Omega_{\Lambda})$ is excluded at a confidence level greater than $1
\sigma$. Inversely, by assuming prior knowledge about the cosmological model, the cosmology-evolution diagram can be used to gain useful insights about the redshift evolution of baryonic discs hosted in dark matter halos of nearly equal masses. In particular, in a $\Lambda CDM$ cosmology, we find evidence for a bimodal evolution where the low-mass discs have undergone significant surface brightness evolution over the last 8.5 Gyr, while more massive systems have not. We suggest that this dichotomy can be explained by the epochs at which these two different populations last assembled.

Key words: cosmology: observations -- cosmology: cosmological parameters -- galaxies: fundamental parameters -- galaxies: evolution -- galaxies: high-redshift

© ESO 2008