EDP Sciences
Free access
Issue A&A
Volume 471, Number 1, August III 2007
Page(s) 187 - 192
Section Interstellar and circumstellar matter
DOI http://dx.doi.org/10.1051/0004-6361:20077458



A&A 471, 187-192 (2007)
DOI: 10.1051/0004-6361:20077458

H2D+ line emission in Proto-Planetary Disks

A. Asensio Ramos1, C. Ceccarelli2, and M. Elitzur3

1  Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
    e-mail: aasensio@iac.es
2  Laboratoire d'Astrophysique de l'Observatoire de Grenoble, BP 53, 38041 Grenoble Cedex 9, France
    e-mail: Cecilia.Ceccarelli@obs.ujf-grenoble.fr
3  Physics & Astronomy Department, University of Kentucky, Lexington, KY 40506-0055, USA
    e-mail: moshe@pa.uky.edu

(Received 12 March 2007 / Accepted 11 May 2007)

Abstract
Context.Previous studies have indicated that the 372.4 GHz ground transition of ortho-H2D+ might be a powerful probe of Proto-Planetary Disks. The line could be especially suited for study of the disk mid-plane, where the bulk of the mass resides and where planet formation takes place.
Aims.Provide detailed theoretical predictions for the line intensity, profile and maps expected for representative disk models.
Methods.We determine the physical and chemical structure of the disks from the model developed by Ceccarelli & Dominik (2005, A&A, 440, 583). The line emission is computed with the new radiative transfer method developed recently by Elitzur & Asensio Ramos (2006, MNRAS, 365, 779).
Results.We present intensity maps convolved with the expected ALMA resolution, which delineate the origin of the H2D+ 372.4 GHz line. In the disk inner regions, the line probes the conditions in the mid-plane out to radial distances of a few tens of AU, where Solar-like planetary systems might form. In the disk outermost regions, the line originates from slightly above the mid-plane. When the disk is spatially resolved, the variation of line profile across the image provides important information about the velocity field. Spectral profiles of the entire disk flux show a double peak shape at most inclination angles.
Conclusions.Our study confirms that the 372.4 GHz H2D+ line provides powerful diagnostics of the mid-plane of Proto-Planetary Disks. Current submillimeter telescopes are capable of observing this line, though with some difficulties. The future ALMA interferometer will have the sensitivity to observe and even spatially resolve the H2D+ line emission.


Key words: stars: formation -- stars: planetary systems: protoplanetary disks -- stars: circumstellar matter



© ESO 2007

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)