EDP Sciences
Free access
Volume 467, Number 3, June I 2007
Page(s) 1299 - 1311
Section The Sun
DOI http://dx.doi.org/10.1051/0004-6361:20066857

A&A 467, 1299-1311 (2007)
DOI: 10.1051/0004-6361:20066857

Leakage of photospheric acoustic waves into non-magnetic solar atmosphere

R. Erdélyi1, C. Malins1, G. Tóth2, and B. De Pontieu3

1  Solar Physics and Space Plasma Research Centre (SPRC), Department of Applied Mathematics, University of Sheffield, The Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
    e-mail: [robertus;c.malins]@sheffield.ac.uk
2  Department of Atomic Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
    e-mail: gtoth@umich.edu
3  Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Building 252, Palo Alto, CA 94304n, USA
    e-mail: bdp@lmsal.com

(Received 1 December 2006 / Accepted 3 March 2007)

Aims.This paper aims to look at the propagation of synthetic photospheric oscillations from a point source into a two-dimensional non-magnetic solar atmosphere. It takes a particular interest in the leakage of 5-min global oscillations into the atmosphere, and aims to complement efforts on the driving of chromospheric dynamics (e.g. spicules and waves) by 5-min oscillations.
Methods.A model solar atmosphere is constructed based on realistic temperature and gravitational stratification. The response of this atmosphere to a wide range of adiabatic periodic velocity drivers is numerically investigated in the hydrodynamic approximation.
Results.The findings of this modelling are threefold. Firstly, high-frequency waves are shown to propagate from the lower atmosphere across the transition region experiencing relatively low reflection and transmitting energy into the corona. Secondly, it is demonstrated that driving the upper solar photosphere with a harmonic piston driver at around the 5 min period may generate three separate standing modes with similar periods in the chromosphere and transition region. In the cavity formed by the chromosphere and bounded by regions of low cut-off period at the photospheric temperature minimum and the transition region this is caused by reflection, while at either end of this region in the lower chromosphere and transition region the standing modes are caused by resonant excitation. Finally, the transition region becomes a guide for horizontally propagating surface waves for a wide range of driver periods, and in particular at those periods which support chromospheric standing waves. Crucially, these findings are the results of a combination of a chromospheric cavity and resonant excitation in the lower atmosphere and transition region.

Key words: hydrodynamics -- methods: numerical -- Sun: chromosphere -- Sun: oscillations -- Sun: atmosphere -- Sun: transition region

© ESO 2007

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.