EDP Sciences
Free access
Issue A&A
Volume 460, Number 2, December III 2006
Page(s) L9 - L12
Section Letters
DOI http://dx.doi.org/10.1051/0004-6361:20066322

A&A 460, L9-L12 (2006)
DOI: 10.1051/0004-6361:20066322


Too little radiation pressure on dust in the winds of oxygen-rich AGB stars

P. Woitke

Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
    e-mail: woitke@strw.leidenuniv.nl

(Received 30 August 2006 / Accepted 6 October 2006)

Aims.It is commonly assumed that the massive winds of AGB stars are dust-driven and pulsation-enhanced. However, detailed frequency-dependent dynamical models that can explain the observed magnitudes of mass loss rates and outflow velocities have been published so far only for C-stars. This letter reports on first results of similar models for oxygen-rich AGB stars. The aim is to provide a better understanding of the wind driving mechanism, the dust condensation sequence, and the role of pulsations.
Methods.New dynamical models for dust-driven winds of oxygen-rich AGB stars are presented which include frequency-dependent Monte Carlo radiative transfer by means of a sparse opacity distribution technique and a time-dependent treatment of the nucleation, growth and evaporation of inhomogeneous dust grains composed of a mixture of Mg2SiO4, SiO2, Al2O3, TiO2, and solid Fe.
Results.The frequency-dependent treatment of radiative transfer reveals that the gas is cold close to the star ( $700{-}900\,$K at $1.5{-}2\,R_\star$) which facilitates the nucleation process. The dust temperatures are strongly material-dependent, with differences as large as 1000 K for different pure materials, which has an important influence on the dust formation sequence. Two dust layers are formed in the dynamical models: almost pure glassy Al2O3 close to the star ( $r \ga 1.5\,R_\star$) and the more opaque Fe-poor Mg-Fe-silicates further out. Solid Fe and Fe-rich silicates are found to be the only condensates that can efficiently absorb the stellar light in the near IR. Consequently, they play a key role in the wind driving mechanism and act as a thermostat. Only small amounts of Fe can be incorporated into the grains, because otherwise the grains become too hot. Thus, the models reveal almost no mass loss, and no dust shells.
Conclusions.The observed dust sequence Al2O3 $\to$ Fe-poor Mg-Fe-silicates for oxygen-rich AGB stars having low $\to$ high mass loss rates is in agreement with the presented model and can be understood as follows: Al2O3 is present in the extended atmosphere of the star below the wind acceleration region, also without mass loss. The Mg-Fe-silicates form further out and, therefore, their amount depends on the mass loss rate. The driving mechanism of oxygen-rich AGB stars is still an unsolved puzzle.

Key words: hydrodynamics -- radiative transfer -- stars: winds, outflows -- stars: mass-loss -- stars: AGB and post-AGB

© ESO 2006

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)