EDP Sciences
Free access
Issue A&A
Volume 457, Number 3, October III 2006
Page(s) 963 - 986
Section Stellar structure and evolution
DOI http://dx.doi.org/10.1051/0004-6361:20064855



A&A 457, 963-986 (2006)
DOI: 10.1051/0004-6361:20064855

Multidimensional supernova simulations with approximative neutrino transport

I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions
L. Scheck, K. Kifonidis, H.-Th. Janka and E. Müller

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany
    e-mail: scheck@mpa-garching.mpg.de

(Received 13 January 2006 / Accepted 12 June 2006)

Abstract
We study hydrodynamic instabilities during the first seconds of core-collapse supernovae by means of 2D simulations with approximative neutrino transport and boundary conditions that parameterize the effects of the contracting neutron star and allow us to obtain sufficiently strong neutrino heating and, hence, neutrino-driven explosions. Confirming more idealised studies, as well as supernova simulations with spectral transport, we find that random seed perturbations can grow by hydrodynamic instabilities to a globally asymmetric mass distribution in the region between the nascent neutron star and the accretion shock, leading to a dominance of dipole (l=1) and quadrupole (l=2) modes in the explosion ejecta, provided the onset of the supernova explosion is sufficiently slower than the growth time scale of the low-mode instability. By gravitational and hydrodynamic forces, the anisotropic mass distribution causes an acceleration of the nascent neutron star, which lasts for several seconds and can propel the neutron star to velocities of more than 1000$\,$km$\,$s-1. Because the explosion anisotropies develop chaotically and change by small differences in the fluid flow, the magnitude of the kick varies stochastically. No systematic dependence of the average neutron star velocity on the explosion energy or the properties of the considered progenitors is found. Instead, the anisotropy of the mass ejection, and hence of the kick, seems to increase when the nascent neutron star contracts more quickly, and thus low-mode instabilities can grow more rapidly. Our more than 70 models separate into two groups, one with high and the other with low neutron star velocities and accelerations after one second of post-bounce evolution, depending on whether the l=1 mode is dominant in the ejecta or not. This leads to a bimodality of the distribution when the neutron star velocities are extrapolated to their terminal values. Establishing a link to the measured distribution of pulsar velocities, however, requires a much larger set of calculations and ultimately 3D modelling.


Key words: hydrodynamics -- instabilities -- radiative transfer -- neutrinos -- stars: supernovae: general -- pulsars: general



© ESO 2006

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)