EDP Sciences
Free access
Volume 452, Number 2, June III 2006
Page(s) 623 - 630
Section The Sun
DOI http://dx.doi.org/10.1051/0004-6361:20054643

A&A 452, 623-630 (2006)
DOI: 10.1051/0004-6361:20054643

What is the spatial distribution of magnetic helicity injected in a solar active region?

E. Pariat1, 2, A. Nindos3, P. Démoulin1 and M. A. Berger4

1  LESIA, Observatoire de Paris-Meudon, UMR 8109 (CNRS), 92195 Meudon Cedex, France
    e-mail: [etienne.pariat;pascal.demoulin]@obspm.fr
2  Université Paris 7, Denis Diderot, 75251 Paris Cedex 05, France
3  Section of Astrogeophysics, Department of Physics, University of Ioannina, 45110, Greece
    e-mail: anindos@cc.uoi.gr
4  Department of Mathematics, University College London, UK
    e-mail: m.berger@ucl.ac.uk

(Received 5 December 2005 / Accepted 26 February 2006)

Context.Magnetic helicity is suspected to play a key role in solar phenomena such as flares and coronal mass ejections. Several investigations have recently computed the photospheric flux of magnetic helicity in active regions. The derived spatial maps of the helicity flux density, called GA, have an intrinsic mixed-sign patchy distribution.
Aims. Pariat et al. (2005) recently showed that GA is only a proxy of the helicity flux density, which tends to create spurious polarities. They proposed a better proxy, $G_{\theta}$. We investigate here the implications of this new approach on observed active regions.
Methods. The magnetic data are from MDI/SoHO instrument and the photospheric velocities are computed by local correlation tracking. Maps and temporal evolution of GA and $G_{\theta}$ are compared using the same data set for 5 active regions.
Results. Unlike the usual GA maps, most of our $G_{\theta}$ maps show almost unipolar spatial structures because the nondominant helicity flux densities are significantly suppressed. In a few cases, the $G_{\theta}$ maps still contain spurious bipolar signals. With further modelling we infer that the real helicity flux density is again unipolar. On time-scales larger than their transient temporal variations, the time evolution of the total helicity fluxes derived from GA and $G_{\theta}$ show small differences. However, unlike GA, with $G_{\theta}$ the time evolution of the total flux is determined primarily by the predominant-signed flux while the nondominant-signed flux is roughly stable and probably mostly due to noise.
Conclusions.Our results strongly support the conclusion that the spatial distribution of helicity injected into active regions is much more coherent than previously thought: on the active region scale the sign of the injected helicity is predominantly uniform. These results have implications for the generation of the magnetic field (dynamo) and for the physics of both flares and coronal mass ejections.

Key words: Sun: magnetic fields -- Sun: photosphere -- Sun: Corona

© ESO 2006

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.