EDP Sciences
Free access
Volume 450, Number 1, April IV 2006
Page(s) 105 - 115
Section Galactic structure, stellar clusters, and populations
DOI http://dx.doi.org/10.1051/0004-6361:20054351
A&A 450, 105-115 (2006)
DOI: 10.1051/0004-6361:20054351

Globular cluster system and Milky Way properties revisited

E. Bica1, C. Bonatto1, B. Barbuy2 and S. Ortolani3

1  Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS, Brazil
    e-mail: [bica;charles]@if.ufrgs.br
2  Universidade de São Paulo, Dept. de Astronomia, Rua do Matão 1226, São Paulo 05508-090, Brazil
    e-mail: barbuy@astro.iag.usp.br
3  Università di Padova, Dipartimento di Astronomia, Vicolo dell'Osservatorio 2, 35122 Padova, Italy
    e-mail: ortolani@pd.astro.it

(Received 13 October 2005 / Accepted 28 November 2005)

Aims.Updated data of the 153 Galactic globular clusters are used to readdress fundamental parameters of the Milky Way, such as the distance of the Sun to the Galactic centre, the bulge and halo structural parameters, and cluster destruction rates.
Methods.We build a reduced sample that has been decontaminated of all the clusters younger than 10 Gyr and of those with retrograde orbits and/or evidence of relation to dwarf galaxies. The reduced sample contains 116 globular clusters that are tested for whether they were formed in the primordial collapse.
Results.The 33 metal-rich globular clusters ( $\rm [Fe/H]\geq-0.75$) of the reduced sample basically extend to the Solar circle and are distributed over a region with the projected axial-ratios typical of an oblate spheroidal, $\Delta x:\Delta y:\Delta z\approx1.0:0.9:0.4$. Those outside this region appear to be related to accretion. The 81 metal-poor globular clusters span a nearly spherical region of axial-ratios ${\approx}1.0:1.0:0.8$ extending from the central parts to the outer halo, although several clusters in the external region still require detailed studies to unravel their origin as accretion or collapse. A new estimate of the Sun's distance to the Galactic centre, based on the symmetries of the spatial distribution of 116 globular clusters, is provided with a considerably smaller uncertainty than in previous determinations using globular clusters, $R_{\rm O}=7.2\pm0.3\,\rm kpc$. The metal-rich and metal-poor radial-density distributions flatten for $R_{\rm GC}\leq2\,\rm kpc$ and are represented well over the full Galactocentric distance range both by a power-law with a core-like term and Sérsic's law; at large distances they fall off as ${\sim} R^{-3.9}$.
Conclusions.Both metallicity components appear to have a common origin that is different from that of the dark matter halo. Structural similarities between the metal-rich and metal-poor radial distributions and the stellar halo are consistent with a scenario where part of the reduced sample was formed in the primordial collapse and part was accreted in an early period of merging. This applies to the bulge as well, suggesting an early merger affecting the central parts of the Galaxy. The present decontamination procedure is not sensitive to all accretions (especially prograde) during the first Gyr, since the observed radial density profiles still preserve traces of the earliest merger(s). We estimate that the present globular cluster population corresponds to ${\leq}23\pm6\%$ of the original one. The fact that the volume-density radial distributions of the metal-rich and metal-poor globular clusters of the reduced sample follow both a core-like power-law, and Sérsic's law indicates that we are dealing with spheroidal subsystems at all scales.

Key words: Galaxy: globular clusters: general -- Galaxy: structure

SIMBAD Objects
Tables at the CDS

© ESO 2006

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.