EDP Sciences
Free Access
Volume 442, Number 1, October IV 2005
Page(s) 271 - 279
Section Stellar structure and evolution
DOI https://doi.org/10.1051/0004-6361:20053560
Published online 30 September 2005

A&A 442, 271-279 (2005)
DOI: 10.1051/0004-6361:20053560

XMM-Newton observation of the long-period polar V1309 Orionis: the case for pure blobby accretion

R. Schwarz1, 2, K. Reinsch2, K. Beuermann2 and V. Burwitz3

1  Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
    e-mail: rschwarz@aip.de
2  Universitätssternwarte Göttingen, Geismarlandstraße 11, 37083 Göttingen, Germany
3  Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, 85740 Garching, Germany

(Received 2 June 2005 / Accepted 4 July 2005 )


Using XMM-Newton we have obtained the first continuous X-ray observation covering a complete orbit of the longest period polar, V1309 Ori. The X-ray light curve is dominated by a short, bright phase interval with EPIC pn count rates reaching up to 15 cts s-1 per 30 s resolution bin. The bright phase emission is well described by a single blackbody component with $kT_{\rm bb} = (45 \pm 3)$ eV. The absence of a bremsstrahlung component at photon energies above 1 keV yields a flux ratio $F_{\rm bb}/F_{\rm br} \geq 6700$. This represents the most extreme case of a soft X-ray excess yet observed in an AM Herculis star. The bright, soft X-ray emission is subdivided into a series of individual flare events supporting the hypothesis that the soft X-ray excess in V1309 Ori is caused by accretion of dense blobs carrying the energy into sub-photospheric layers. On average, the flares have rise and fall times of 10 s. In addition to the bright phase emission, a faint, hard X-ray component is visible throughout the binary orbit with an almost constant count rate of 0.01 cts s-1. Spectral modelling indicates that this emission originates from a complex multi-temperature plasma. At least three components of an optically thin plasma with temperatures kT= 0.065, 0.7, and 2.9 keV are required to fit the observed flux distribution. The faint phase emission is occulted during the optical eclipse. Eclipse ingress lasts about 15-20 min and is substantially prolonged beyond nominal ingress of the white dwarf. This and the comparatively low plasma temperature provide strong evidence that the faint-phase emission is not thermal bremsstrahlung from a post-shock accretion column above the white dwarf. A large fraction of the faint-phase emission is ascribed to the spectral component with the lowest temperature and could be explained by scattering of photons from the blackbody component in the infalling material above the accretion region. The remaining hard X-ray flux could be produced in the coupling region, so far unseen in other AM Herculis systems.

Key words: accretion, accretion disks -- stars: novae, cataclysmic variables -- X-rays: binaries -- stars: magnetic fields -- stars: individual: V1309 Ori

SIMBAD Objects

© ESO 2005

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.