EDP Sciences
Free access
Issue
A&A
Volume 439, Number 1, August III 2005
Page(s) 183 - 194
Section Interstellar and circumstellar matter
DOI http://dx.doi.org/10.1051/0004-6361:20041054


A&A 439, 183-194 (2005)
DOI: 10.1051/0004-6361:20041054

To see or not to see a bow shock

Identifying bow shocks with H$\alpha$ allsky surveys
D. Brown1, 2 and D. J. Bomans2

1  Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK
    e-mail: db@astro.livjm.ac.uk
2  Astronomical Institute, University of Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
    e-mail: dbomans@astro.rub.de

(Received 7 April 2004 / Accepted 28 April 2005)

Abstract
OB-stars have the highest luminosities and strongest stellar winds of all stars, which enables them to interact strongly with their surrounding ISM, thus creating bow shocks. These offer us an ideal opportunity to learn more about the ISM. They were first detected and analysed around runaway OB-stars using the IRAS allsky survey by van Buren et al. (1995, AJ, 110, 2614). Using the geometry of such bow shocks information concerning the ISM density and its fluctuations can be gained from such infrared observations. As to help to improve the bow shock models, additional observations at other wavelengths, e.g. H$\alpha$, are most welcome. However due to their low velocity these bow shocks have a size of $\sim $1°, and could only be observed as a whole with great difficulties. In the light of the new H$\alpha$ allsky surveys (SHASSA/VTSS) this is no problem any more. We developed different methods to detect bow shocks, e.g. the improved determination of their symmetry axis with radial distance profiles. Using two H$\alpha$-allsky surveys (SHASSA/VTSS), we searched for bow shocks and compared the different methods. From our sample we conclude, that the correlation between the direction of both proper motion and the symmetry axis determined with radial distance profile is the most promising detection method. We found eight bow shocks around HD 17505 , HD 24430 , HD 48099 , HD 57061 , HD 92206 , HD 135240 , HD 149757 , and HD 158186 from 37 candidates taken from van Buren et al. (1995, AJ, 110, 2614). Additionally to the traditional determination of ISM parameters using the standoff distance of the bow shock, another approach was chosen, using the thickness of the bow-shock layer. Both methods lead to the same results, yielding densities ($\sim $1 cm-3) and the maximal temperatures ($\sim $104 K), that fit well to the up-to-date picture of the Warm Ionised Medium.


Key words: stars: early-type -- stars: kinematics -- stars: mass-loss -- ISM: bubble -- ISM: structure

SIMBAD Objects



© ESO 2005

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.