EDP Sciences
Free access
Volume 433, Number 2, April II 2005
Page(s) 647 - 658
Section Stellar atmospheres
DOI http://dx.doi.org/10.1051/0004-6361:20041308

A&A 433, 647-658 (2005)
DOI: 10.1051/0004-6361:20041308

Spectroscopic determination of photospheric parameters and chemical abundances of 6 K-type stars,

L. Affer1, G. Micela1, T. Morel1, J. Sanz-Forcada1, 2 and F. Favata2

1  Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 Palermo, Italy
    e-mail: affer@astropa.unipa.it
2  Astrophysics Division - Research and Science Support Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands

(Received 17 May 2004 / Accepted 16 November 2004)

High resolution, high -S/N- ratio optical spectra have been obtained for a sample of 6 K-type dwarf and subgiant stars, and have been analysed with three different LTE methods in order to derive detailed photospheric parameters and abundances and to compare the characteristics of analysis techniques. The results have been compared with the aim of determining the most robust method to perform complete spectroscopic analyses of K-type stars, and in this perspective the present work must be considered as a pilot study. In this context we have determined the abundance ratios with respect to iron of several elements. In the first method the photospheric parameters ( $T_{\rm eff}$, $\log g$, and $\xi$) and metal abundances are derived using measured equivalent widths and Kurucz LTE model atmospheres as input for the MOOG software code. The analysis proceeds in an iterative way, and relies on the excitation equilibrium of the $\ion{Fe}{i}$ lines for determining the effective temperature and microturbulence, and on the ionization equilibrium of the $\ion{Fe}{i}$ and $\ion{Fe}{ii}$ lines for determining the surface gravity and the metallicity. The second method follows a similar approach, but discards the $\ion{Fe}{i}$ low excitation potential transitions (which are potentially affected by non-LTE effects) from the initial line list, and relies on the B-V colour index to determine the temperature. The third method relies on the detailed fitting of the 6162 Å $\ion{Ca}{i}$ line to derive the surface gravity, using the same restricted line list as the second method. Methods 1 and 3 give consistent results for the program stars; in particular the comparison between the results obtained shows that the $\ion{Fe}{i}$ low-excitation potential transitions do not appear significantly affected by non-LTE effects (at least for the subgiant stars), as suggested by the good agreement of the atmospheric parameters and chemical abundances derived. The second method leads to systematically lower $T_{\rm eff}$ and $\log g$ values with respect to the first one, and a similar trend is shown by the chemical abundances (with the exception of the oxygen abundance). These differences, apart from residual non-LTE effects, may be a consequence of the colour- $T_{\rm eff}$ scale used. The $\alpha$-elements have abundance ratios consistent with the solar values for all the program stars, as expected for "normal" disk stars. The first method appears to be the most reliable one, as it is self-consistent, it always leads to convergent solutions and the results obtained are in good agreement with previous determinations in the literature.

Key words: stars: individual: HD 4628 -- stars: individual: HD 10780 -- stars: individual: HD 23249 ($\delta$ Eri) -- stars: individual: HD 198149 ($\eta$ Cep) -- stars: individual: HD 201091 (61 Cyg A) -- stars: individual: HD 222404 ($\gamma$ Cep)

SIMBAD Objects

© ESO 2005

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.