EDP Sciences
Free access
Volume 422, Number 1, July IV 2004
Page(s) 225 - 237
Section Stellar structure and evolution
DOI http://dx.doi.org/10.1051/0004-6361:20034583

A&A 422, 225-237 (2004)
DOI: 10.1051/0004-6361:20034583

Stellar evolution with rotation and magnetic fields

II. General equations for the transport by Tayler-Spruit dynamo
A. Maeder and G. Meynet

Geneva Observatory, 1290 Sauverny, Switzerland
    e-mail: andre.maeder@obs.unige.ch; georges.meynet@obs.unige.ch

(Received 28 October 2003 / Accepted 6 April 2004 )

We further develop the Tayler-Spruit dynamo theory, based on the most efficient instability for generating magnetic fields in radiative layers of differentially rotating stars. We avoid the simplifying assumptions that either the $\mu$- or the T-gradient dominates, but we treat the general case and we also account for the nonadiabatic effects, which favour the growth of the magnetic field. The general equation leads to the same analytical solutions in the limiting cases considered by Spruit (2002). Numerical models of a $15 ~M_{\odot}$ star with a magnetic field are performed. The differences between the asymptotic solutions and the general solution demonstrate the need to use the general solution. Stars with a magnetic field rotate almost as a solid body. Several of their properties (size of the core, MS lifetimes, tracks, abundances) are closer to those of models without rotation than with rotation only. In particular, the observed N/C or N/H excesses in OB stars are better explained by our previous models with rotation only than by the present models with magnetic fields that predict no nitrogen excesses.

We show that there is a complex feedback loop between the magnetic instability and the thermal instability driving meridional circulation. Equilibrium of the loop, with a small amount of differential rotation, can be reached when the velocity Umagn of the growth of the magnetic instability is of the same order as the velocity Ucirc of the meridional circulation. This opens the possibility for further magnetic models, but at this stage we do not know the relative importance of the magnetic fields due to the Tayler instability in stellar interiors.

Key words: stars: rotation -- stars: magnetic fields -- stars: evolution

Offprint request: A. Maeder, andre.maeder@obs.unige.ch

© ESO 2004

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.