EDP Sciences
Free Access
Volume 413, Number 2, January II 2004
Page(s) 571 - 591
Section Formation, structure and evolution of stars
DOI https://doi.org/10.1051/0004-6361:20031554

A&A 413, 571-591 (2004)
DOI: 10.1051/0004-6361:20031554

Radial mixing in protoplanetary accretion disks

IV. Metamorphosis of the silicate dust complex
H.-P. Gail

Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstraße 15, 69121 Heidelberg, Germany
(Received 4 December 2002 / Accepted 29 August 2003 )

The outer regions of protoplanetary accretion discs are formed by material from the parent molecular cloud of the freshly forming stars. The interstellar dust in this material is a mixture of species which does not correspond to any kind of chemical equilibrium state between the solid and gaseous phases. Mass accretion carries this material into the warm inner disc zones where chemical and physical processes are activated which convert the non-equilibrium solid-gas mixture into a chemical equilibrium mixture. Part of the equilibrated material is then mixed outwards by turbulent diffusion and large-scale circulation currents. This work specifically considers the evolution of the main dust components, viz. from the interstellar mixture of amorphous Mg-Fe-silicates, into a chemical equilibrium mixture of crystalline Mg-silicates, and iron. The basic set of equations for calculating the evolution of a mixture of silicates and iron is derived. Model calculations based on stationary, one-zone $\alpha$-discs are combined with the advection-diffusion-reaction equations for the dust evolution to study the interstellar to equilibrium dust conversion and the radial mixing of equilibrated dust into the outer disc regions. This determines the mixture of the main dust components which form the mineral inventory of planetesimals. It is found that the results of the model calculation for the resulting mineral mixture are in rough agreement with the composition of matrix material of primitive meteorites and dust in cometary nuclei.

Key words: accretion disks -- dust -- solar system: formation

SIMBAD Objects in preparation

© ESO 2004

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.