EDP Sciences
Free access
Volume 409, Number 1, October I 2003
Page(s) 375 - 385
Section Physical and chemical processes
DOI http://dx.doi.org/10.1051/0004-6361:20030927

A&A 409, 375-385 (2003)
DOI: 10.1051/0004-6361:20030927

Optimized in-flight absolute calibration for extended CMB surveys

B. Cappellini1, D. Maino1, 2, G. Albetti2, P. Platania1, R. Paladini3, A. Mennella4 and M. Bersanelli1, 4

1  Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
2  INAF-Osservatorio Astronomico, via G. B. Tiepolo 11, 34131 Trieste, Italy
3  SISSA/ISAS, Astrophysics Sector, via Beirut 4, 34014 Trieste, Italy
4  IASF, CNR, via Bassini 15, 20133 Milano, Italy

(Received 8 October 2002 / Accepted 4 June 2003 )

Accurate measurements of the Cosmic Microwave Background (CMB) anisotropy call for high precision and reliability of the in-flight calibration. For extended surveys the CMB dipole provides an excellent calibration source at frequencies lower than ~200 GHz; however poorly known foreground emissions, such as diffuse galactic components, complicate the signal and introduce a systematic error in the calibration. We show that introducing a weight function that takes into account the uncertainty in the a priori knowledge of the sky, allows us to substantially improve the calibration accuracy with respect to methods involving galactic latitude cuts. This new method is tested for PLANCK-LFI radiometers at 30 and 100 GHz. On short time scales (less than 1 day) the absolute calibration of each channel can be recovered with an overall 1-2% accuracy. We also consider the effect of CMB anisotropy itself on the calibration, and find that knowledge of the CMB pattern on large scales is needed to keep the short-time scale calibration accuracy within 1%.

Key words: cosmology: cosmic microwave background -- methods: data analysis

Offprint request: B. Cappellini, Benedetta.Cappellini@mi.infn.it

© ESO 2003

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.