EDP Sciences
Free Access
Volume 408, Number 3, September IV 2003
Page(s) 981 - 1007
Section Formation, structure and evolution of stars
DOI https://doi.org/10.1051/0004-6361:20031030

A&A 408, 981-1007 (2003)
DOI: 10.1051/0004-6361:20031030

A $\mathsf{3{-}5~\mu}$m VLT spectroscopic survey of embedded young low mass stars I

Structure of the CO ice
K. M. Pontoppidan1, H. J. Fraser1, E. Dartois2, W.-F. Thi3, E. F. van Dishoeck1, A. C. A. Boogert4, L. d'Hendecourt2, A. G. G. M. Tielens5 and S. E. Bisschop1

1  Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands
2  Institut d'Astrophysique Spatiale, Bât. 121, Université Paris XI, 91405 Orsay Cedex, France
3  Astronomical Institute "Anton Pannekoek", University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
4  Department of Astronomy 105-24, California Institute of Technology, Pasadena, CA 91125, USA
5  Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands

(Received 7 April 2003 / Accepted 2 July 2003)

Medium resolution ( $\lambda/\Delta \lambda =
5000{-}10\,000$ ) VLT-ISAAC M-band spectra are presented of 39 young stellar objects in nearby low-mass star forming clouds showing the $\rm 4.67~\mu m$ stretching vibration mode of solid CO. By taking advantage of the unprecedentedly large sample, high S/N ratio and high spectral resolution, similarities in the ice profiles from source to source are identified. It is found that excellent fits to all the spectra can be obtained using a phenomenological decomposition of the CO stretching vibration profile at  $\rm 4.67~\mu m$ into 3 components, centered on  $\rm 2143.7~cm^{-1}$, $\rm
2139.9~cm^{-1}$ and  $\rm 2136.5~cm^{-1}$ with fixed widths of 3.0, 3.5 and  $\rm 10.6~cm^{-1}$, respectively. All observed interstellar CO profiles can thus be uniquely described by a model depending on only 3 linear fit parameters, indicating that a maximum of 3 specific molecular environments of solid CO exist under astrophysical conditions. A simple physical model of the CO ice is presented, which shows that the $\rm
2139.9~cm^{-1}$ component is indistinguishable from pure CO ice. It is concluded, that in the majority of the observed lines of sight, 60-90% of the CO is in a nearly pure form. In the same model the $\rm 2143.7~cm^{-1}$ component can possibly be explained by the longitudinal optical (LO) component of the vibrational transition in pure crystalline CO ice which appears when the background source is linearly polarised. The model therefore predicts the polarisation fraction at  $\rm 4.67~\mu m$, which can be confirmed by imaging polarimetry. The $\rm 2152~cm^{-1}$ feature characteristic of CO on or in an unprocessed water matrix is not detected toward any source and stringent upper limits are given. When this is taken into account, the $\rm 2136.5~cm^{-1}$  component is not consistent with the available water-rich laboratory mixtures and we suggest that the carrier is not yet fully understood. A shallow absorption band centered between  $\rm 2165~cm^{-1}$ and  $\rm 2180~cm^{-1}$ is detected towards 30 sources. For low-mass stars, this band is correlated with the CO component at $\rm 2136.5~cm^{-1}$, suggesting the presence of a carrier different from XCN at $\rm 2175~cm^{-1}$. Furthermore the absorption band from solid  $\rm ^{13}CO$ at  $\rm
2092~cm^{-1}$ is detected towards IRS 51 in the $\rho$ Ophiuchi cloud complex and an isotopic ratio of $\rm ^{12}CO/^{13}CO=68\pm10$ is derived. It is shown that all the observed solid $\rm
^{12}CO$  profiles, along with the solid $\rm ^{13}CO$ profile, are consistent with grains with an irregularly shaped CO ice mantle simulated by a Continuous Distribution of Ellipsoids (CDE), but inconsistent with the commonly used models of spherical grains in the Rayleigh limit.

Key words: astrochemistry -- stars: circumstellar matter -- ISM: dust, extinction -- ISM: molecules -- infrared: ISM -- stars: pre-main sequence

Offprint request: K. M. Pontoppidan, pontoppi@strw.leidenuniv.nl

SIMBAD Objects

© ESO 2003

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.