Issue |
A&A
Volume 403, Number 1, May III 2003
|
|
---|---|---|
Page(s) | 135 - 140 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20030363 | |
Published online | 29 April 2003 |
The mass-velocity and intensity-velocity relations in jet-driven molecular outflows
1
School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland
2
LERMA, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris, France
Corresponding author: T. P. Downes, turlough.downes@dcu.ie
Received:
18
June
2001
Accepted:
12
March
2003
We use numerical simulations to examine the mass-velocity and
intensity-velocity relations in the CO and H2 S(1)1-0 lines for
jet-driven molecular outflows. Contrary to previous expectations, we find
that the mass-velocity relation for the swept-up gas is a single
power-law, with a shallow slope
-1.5 and no break to a steeper
slope at high velocities. An analytic bowshock model with no post-shock
mixing is shown to reproduce this behaviour very well.
We show that molecular dissociation and the temperature dependence of
the line emissivity are both critical in defining the shape of the line
profiles at velocities above ~20 km s-1. In particular, the
simulated CO
intensity-velocity relation does show a break in slope, even
though the underlying mass distribution does not. These predicted CO profiles are found to compare remarkably well with observations of
molecular outflows, both in terms of the slopes at low and high
velocities and in terms of the range of break velocities at which the
change in slope occurs. Shallower slopes are predicted at high velocity
in higher excitation lines, such as H2 S(1)1-0.
This work indicates that, in jet-driven outflows, the CO
intensity
profile reflects the slope of the underlying mass-velocity distribution
only at velocities
20 km s-1, and that higher temperature tracers
are required to probe the mass distribution at higher speed.
Key words: hydrodynamics / shock waves / ISM: jets and outflows / ISM: molecules
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.