EDP Sciences
Free access
Volume 377, Number 2, October II 2001
Page(s) 672 - 676
Section Diffuse matter in space
DOI http://dx.doi.org/10.1051/0004-6361:20011113

A&A 377, 672-676 (2001)
DOI: 10.1051/0004-6361:20011113

A model for the strings of $\mathsf{\eta}$ Carinae

N. Soker

Department of Physics, University of Haifa at Oranim, Tivon 36006, Israel

(Received 11 June 2001 / Accepted 8 August 2001 )

We propose a model based on ionization shadows to explain the formation of the long and narrow strings of $\eta$ Carinae. Five strings are known, all located along the symmetry axis outside the Homunculus. The model assumes that each string is formed in a shadow behind a dense clump near the symmetry axis. The surrounding gas is ionized first, becomes much hotter, and compresses the gas in the shadow. This leads to the formation of a radial, dense, long, and narrow region, i.e., a string. Later the neutral material in the strings is ionized, and becomes brighter. Still later it re-expands, and we predict that in ~ $100{-}200 \rm {yrs}$ the strings will fade. The condition for the model to work is that the ionization front, due to the diffuse ionizing recombination radiation of the surrounding gas, proceeds into the shadow at a velocity slower than the compression speed, which is about the sound speed. From that we get a condition on the mass loss rate of the mass loss episode that formed the strings, which reads $\dot M_{\rm s} \lesssim 10^{-4} M_\odot \rm {yr}^{-1}$. The model can also explain the strings in the planetary nebula NGC 6543.

Key words: stars: early-type -- stars: mass loss -- stars: individual: $\eta$ Carinae -- ISM: planetary nebulae: individual: NGC 6543 -- ISM: reflection nebulae

SIMBAD Objects

© ESO 2001