Table 1: Parameter definitions.
Designation Definition Range in library
(1) (2) (3)
Formation time $T_{\textrm{\tiny form}}$ Time since the galaxy first started forming stars $10^8 {-} 14\times10^9$ yr
Timescale of SFH $\gamma $ $\Psi(t) \propto {\rm e}^{-\gamma t}$ 0 - 7 Gyr-1
Stellar mass M*a $M^* = \int_{0}^{T_{{\rm form}}} {\rm d}t \Psi(t) (1-R(t))$ 0.01-10 $M_{\odot}$
Star formation rate SFRa ${\it SFR} = \int_{0}^{10^8} {\rm d}t \Psi(t) / 10^8 \textrm{yr}$ 10-30-10-7.5 $M_{\odot}$/yr
Time of the last burst $T_{\textrm{\tiny lb}}$ Time since begin of last burst $0 {-} 14\times10^9$ yr
Metallicity Z Abundance of all metals heavier than He 0.2-2 $Z_{\odot}$
Mean age in r-band $\langle\textrm{age}_r\rangle$ $\langle\textrm{age}_r\rangle$ = $\frac{\int_{0}^{T_{{\rm form}}} {\rm d}t \Psi(t) (1-R(t)) \Upsilon_r(t)^{-1} t }{ \int_{0}^{T_{{\rm form}}} {\rm d}t \Psi(t) (1-R(t)) \Upsilon_r(t)^{-1}} $ $10^6 {-} 14\times10^9$ yr
Mean mass weighted age $\langle\textrm{age}_{\rm m}\rangle$ $\langle\textrm{age}_{\rm m}\rangle$ = $\frac{\int_{0}^{T_{{\rm form}}} {\rm d}t \Psi(t) (1-R(t)) t }{ \int_{0}^{T_{{\rm form}}} {\rm d}t \Psi(t) (1-R(t))} $ $10^6 {-} 14\times10^9$ yr
Effective attenuation $\tau _V$ $T_{V} = {\rm e}^{-\tau_V}$ 0-6
a The parameters M* and SFR are subject to renormalization for each galaxy, depending on the ratio between the intrinsic luminosity of the object and the intrinsic luminosity of the model galaxy.


Source LaTeX | All tables | In the text