Table 1: Simulation parameters.
Run $L_x \times L_y \times L_z$ $N_x \times N_y \times N_z$ $\beta$ $\langle B_z \rangle$ $\varOmega$ q $\Delta t$
R2D_256 $0.0\times24.0\times12.0$ $1\times128\times256$ 1.0 0.0 1.0 0 100
R2D_512 $0.0\times24.0\times12.0$ $1\times256\times512$ 1.0 0.0 1.0 0 100
R2D_256_Lz24 $0.0\times24.0\times24.0$ $1\times256\times512$ 1.0 0.0 1.0 0 100
R3D_256 $12.0\times24.0\times12.0$ $128\times128\times256$ 1.0 0.0 1.0 0 30
S3D_256 $12.0\times24.0\times12.0$ $128\times256\times128$ 1.0 0.0 1.0 3/2 30
S3D_512 $12.0\times24.0\times12.0$ $256\times512\times256$ 1.0 0.0 1.0 3/2 20
S3D_256_b3 $12.0\times24.0\times12.0$ $128\times256\times128$ 3.0 0.0 1.0 3/2 30
S3D_256_Lz18 $12.0\times24.0\times18.0$ $128\times256\times192$ 1.0 0.0 1.0 3/2 20
S3D_256_Bz0.03 $12.0\times24.0\times18.0$ $128\times256\times192$ 1.0 0.03 1.0 3/2 20
The first column gives the name of the simulation, while the box size, in units of the thermal scale height $H=c_{\rm s} \Omega^{-1}$, and the grid resolution are given in the following two columns. The parameters given in the last five columns are: the ratio of thermal to magnetic pressure $\beta$ in the initial azimuthal field, the mean imposed vertical field  $\langle B_z \rangle$ in units of the midplane azimuthal field, the angular frequency $\Omega$ of the box, the shear parameter q, and finally the simulation time in orbits.

Source LaTeX | All tables | In the text