... edges[*]
In contrast with the gravitational acceleration (the gradient of $\psi $), the potential is generally finite at the edges.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... algebra[*]
In particular, we use the transformation:

 \begin{displaymath}{\vec K}\left(\frac{2\sqrt{x}}{1+x}\right) = (1+x) {\vec K}(x), \quad 0 \le x \le 1.
\end{displaymath} (14)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... discs[*]
Here, discs are supposed to be objects of axis ratio $\Delta \lesssim 0.1$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... have[*]
A careful treatment of the singular cases $s=\{-2,-1\}$ shows that Eq. (52c) yields Eqs. (52a) and (52b).  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... range[*]
This range of exponents should be appropriate for most astrophysical applications (see the introduction).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2008