Contents

A&A 486, 437-452 (2008)
DOI: 10.1051/0004-6361:200809446

Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters[*],[*]

A. Kayser1,2 - M. Hilker3,4 - E. K. Grebel1,2 - P. G. Willemsen3


1 - Astronomisches Institut der Universität Basel, Venusstrasse 7, 4102 Binningen, Switzerland
2 - Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, Mönchhofstraße 12-14, 69120 Heidelberg, Germany
3 - Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
4 - ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany

Received 24 January 2008 / Accepted 14 April 2008

Abstract
Our work focuses on the understanding of the origin of CNO-anomalies, which have been detected in several Galactic globular clusters. The novelty and advantage of this study is that it is based on a homogeneous data set of hundreds of medium-resolution spectra of stars in eight Galactic globular clusters (M 15, M 22, M 55, NGC 288, NGC 362, NGC 5286, Palomar 12, and Terzan 7). Two of the clusters (Palomar 12 and Terzan 7) are believed to be former members of the Sagittarius dwarf spheroidal (Sgr dSph) galaxy. The large homogeneous data set allows for a detailed differential study of the line strengths in the stellar spectra of the observed clusters. Our sample comprises stars in different evolutionary states, namely the main-sequence turn-off (MSTO) region, the subgiant branch (SGB) and the base of the red giant branch (RGB). We compare the relative CN and CH line strengths of stars in the same evolutionary states (with similar log g and $T_{\rm eff}$). The majority of the examined clusters show significant variations in their CN and CH abundances at the base of the RGB. We confirm the presence of a bimodal distribution in CN for the second parameter pair of the clusters (NGC 288 and NGC 362). The two probable former Sgr dSph clusters do not exhibit any CN-strong stars. Overall, our results suggest that the environment in which the clusters formed is responsible for the existence of CN-strong stars. We can confirm the known anticorrelation between CN and CH for most of the observed clusters. Although the signal of CN absorption is weaker for the hotter stars on the MSTO and SGB, we observed the same anticorrelation in these less evolved stars for the CN-bimodal clusters. Including structural parameters taken from the literature reveals that the existence of the CN-bifurcation seems to be independent of most other cluster characteristics. In particular, we do not confirm the correlation between cluster ellipticity and number of CN-strong stars. However, there may be a trend toward an increased percentage of CN-strong stars with increasing cluster tidal radius and total luminosity. We argue that our findings are consistent with pollution by intermediate AGB stars and/or fast rotating massive stars and two generations of star formation in luminous clusters with larger tidal radii at greater Galactocentric distances.

Key words: stars: abundances - Galaxy: globular clusters: general

  
1 Introduction

Among the about 150 known Galactic globular clusters (GC) there exist several clusters that show star-to-star abundance variations for certain chemical elements (see review from Gratton et al. 2004). These variations are ubiquitous particularly for light elements such as C and N and are seen mainly for stars on the red giant branch (RGB). Stars with significantly stronger cyanogen (CN) bands as compared to other stars in the same cluster have been detected as early as 1971 by Osborn in M 5 and M 10 (Osborn 1971). The existence of such stars in these and many other clusters has been confirmed repeatedly (e.g., Smith & Norris 1982; Briley et al. 1989; Smith & Norris 1983; Cohen 1978). However, the fraction of red giants showing enriched CN bands differs from cluster to cluster (Norris 1987).

Over the last three decades spectroscopic studies of the CN and CH absorption bands often revealed a bimodality in CN that is accompanied by a broadened distribution in CH. For the majority of the CN-bimodal clusters (e.g., M 2, M 3, M 5, M 13, 47 Tuc) a CN-CH anticorrelation was detected (e.g., Smith et al. 1996). Since CN is a double-metal molecule, it can be more easily observed in stars with a higher metallicity. Nevertheless, the CN-CH anticorrelation seems to be present also in the very metal-poor cluster M 15 where no clear bimodality of CN could be detected so far (Lee 2000).

Although this topic has been studied extensively in the last decades no self-consistent model has been found to satisfactorily explain the observed chemical variations. Two main scenarios are discussed as possible origins of these abundance patterns:

1)
The ``evolutionary mixing'' scenario: in this scenario the chemical composition in the surfaces of the stars is altered due to deep mixing effects. Material from the stellar interior is dredged-up through regions of active CNO element nucleosynthesis to the upper layers of H-burning. During the H-burning phase via the CNO-cycle N is enriched at the cost of C and O. One would therefore expect a CN-CH anticorrelation if CNO-processed material is dredged up to the stellar surface. The so-called first dredge-up, however, is not able to explain the observed abundance patterns of light elements in RGB stars, especially for metal-poor stars that do not possess deep enough convective envelopes according to standard models (see references in Gratton et al. 2004). An additional mixing episode is needed to explain those patterns. This can either be rotation-induced mixing (e.g., Charbonnel 1995; Sweigart & Mengel 1979) or so-called ``canonical extra-mixing'' (Denissenkov & VandenBerg 2003). These mechanisms naturally explain the [C/Fe]-[N/Fe] anticorrelation observed in RGB stars, however will not work for stars below the RGB bump due the increased molecular weight barrier (e.g., Iben 1968). Based on low resolution spectroscopy, various studies showed that the CN-band strength is a good indicator for the [N/Fe] abundances whereas CH traces [C/Fe] (e.g., Smith et al. 1996). As a consequence, the CN bimodality and the CN-CH anticorrelation observed on the upper RGB stars of many clusters are often interpreted as a result of deep mixing that takes place in certain stars while not in other stars.

2)
The ``primordial'' and ``self-enrichment'' scenarios: in both cases the abundance variations are not due to internal stellar evolutionary effects. The ``primordial'' scenario assumes that there exists a ``primordial floor of abundance variations'' (Gratton et al. 2004) that was in place when the star cluster formed (i.e., an inhomogeneously mixed molecular cloud). In the ``self-enrichment'' scenario the abundance variations are caused by successive generations of stars that formed within the same star cluster. Theoretical nucleosynthesis models show that the observed abundance mix can be provided either by intermediate-mass (4-5 M$\odot$) asymptotic giant branch (AGB) stars (e.g., Denissenkov & Herwig 2003; Ventura et al. 2001; Cottrell & Da Costa 1981), or by fast rotating massive (20-120 M$\odot$) stars (e.g., Decressin et al. 2007; Maeder & Meynet 2006). Both types of objects expel their ejecta via slow stellar winds, which is important in order to not sweep out the gas from which the second generation shall be formed. There are mainly two ways how the enriched stars got to their peculiar abundance pattern: either, the AGB ejecta mixed well with the intracluster medium out of which the second generation formed within the cluster (Cottrell & Da Costa 1981). Or, the AGB ejecta polluted the surfaces of a certain fraction of already existing stars with well-developed radiative cores (e.g., D'Antona et al. 1983; Thoul et al. 2002). The pollution scenario, however, has difficulties to explain the sharp bimodality of CN abundances and the similarity of abundance patterns of evolved as well as unevolved stars.
Lately, the evolutionary mixing scenario has been more and more challenged as correlations/anticorrelations among these elements and the range of variations of each element appear to be independent of stellar evolutionary states (with exception of enhanced depletion of C and O seen on the RGB) (e.g., Harbeck et al. 2003a). Recent spectroscopic studies near and below the main sequence turn-off (MSTO) in the GCs M 71, 47 Tuc and NGC 6752 showed that abundance variations are already present among stars that are expected to be unaffected from deep mixing mechanisms (e.g., Harbeck et al. 2003a; Cohen 1999; Briley et al. 2004). This suggests that at least some of the abundance variations observed in evolved stars were present before the stars reached the RGB, i.e. mixing can not be the only driving mechanism of the observed abundance variations.

The ``self-enrichment'' scenario also is strengthened by the recent findings of multiple subgiant branches (SGB) and main sequences (MS) in several massive GCs (Piotto et al. 2007; Bedin et al. 2004), which require stellar populations with distinct abundance patterns (and ages) within the clusters. Interestingly, the multiple SGBs and MSs can best be explained by a large helium enhancement in the second/third subpopulation of a cluster (D'Antona et al. 2005), which is consistent with the expected abundances of ejecta from intermediate-mass AGB stars (e.g., D'Antona et al. 2002). Actually, these AGB stars need not have been members of the same star cluster. Bekki et al. (2007) recently suggested that massive GCs might have formed in low mass dwarfs embedded in a dark matter halo. In this scenario, the second/third generation of stars then was created out of ejecta from the external ``field'' AGB stars. Since products of H burning are released by fast rotating massive stars in slow winds, also this class of stars may provide the He-enhancement required to explain multiple sequences observed in globular clusters.

Coming back to the overall CNO abundances, the work by Smith et al. (1996) has shown that the total $[({\rm C+N+O)/Fe}]$ for giants in the globular clusters M 3 and M 13 is the same for both CN-strong and CN-weak stars, which would be expected from deep mixing, dredging up CNO processed material to the stellar surfaces. Thus although mixing effects are not existent in unevolved stars they seem to play a role for red giants when studying the CN and CH bands. The challenge is to disentangle the primordial contribution to the C, N abundances from the one resulting from normal evolutionary changes. On the one hand, some basic evolution of low mass population II stars is clearly a common feature in both field and cluster stars. Smith & Martell (2003) showed that halo field giants and globular cluster giants share the same pattern of declining C as a function of increasing magnitude. The same two mixing mechanisms (first dredge-up and a second mixing episode after the RGB-bump) are acting in all population II giants. On the other hand, field stars behave very differently from cluster stars as far as ``heavier'' light elements (namely O, Na) are concerned (Gratton et al. 2000).

If the environment in which a cluster formed (e.g., in the disk of a galaxy vs. the center of a dark matter substructure) defines the enrichment history of a cluster, the observed abundance patters would provide an indication of the origin of the cluster. In his groundbreaking work Zinn proposed that the Galactic globular cluster system consists of various sub-systems (Zinn 1993,1985): bulge/disk (BD), old halo (OH), young halo (YH) globular clusters. He furthermore suggested that most YH clusters might have been accreted from satellite galaxies. However, the Milky Way companions have been found to show, on average, systematically lower [ $\alpha/{\rm Fe}$] ratios than Galactic halo stars and globular clusters (e.g., Sbordone et al. 2007; Pritzl et al. 2005; Shetrone et al. 2001; Fulbright 2002). Hence the present-day dwarfs do not seem to have contributed in a significant way to the build-up of the Galactic halo and to the YH clusters.

The aim of this work is to gain further insight into the mechanism responsible for the strong CN enhancement in some stars. We therefore concentrate on regions in the color magnitude diagrams (CMDs) where stars are believed to be unaffected by mixing effects, i.e. stars on the MS, MSTO, SGB, and lower RGB. In particular, we investigate whether there is a dependence of the CN enhancement on the overall globular cluster properties and/or the sub-class they are belonging to. We investigate if CN-CH variations are different in genuine halo clusters as compared to possibly accreted globular clusters.

This article is structured as follows. Section 2 describes our data and their reduction. Section 3 explains the measurements of the CN and CH band strength and the definition of the cyanogen excess parameter. Sections 4 and 5 present the investigation of the CN/CH anticorrelation and the search for correlations between other cluster properties and the number ratio of CN-strong/CN-weak stars. The final Sect. 6 gives our summary and conclusions.

 

 
Table 1: Log of observations.
Date Target RA; Dec (J2000) Exp. time
May 2002 M 55 MSTO 294.99564 -30.88307 $1800 \;{\rm s}$
  M 55 SGB 294.99646 -30.88368 $2160 \;{\rm s}$
  M 55 RGB 294.99559 -30.88235 $ 480 \;{\rm s}$
July 2004 NGC 288 MSTO 13.23313 -26.57845 $ 5140 \;{\rm s}$
  NGC 288 SGB 13.23630 -26.57807 $ 2700 \;{\rm s}$
  NGC 362 MSTO 15.67363 -70.84870 $ 5400 \;{\rm s}$
  NGC 362 SGB 15.67209 -70.84886 $ 2800 \;{\rm s}$
  NGC 5286 SGB 206.54375 -51.37364 $ 2700 \;{\rm s}$
  M 22 MS 279.04539 -23.90313 $ 5400 \;{\rm s}$
  M 22 SGB 279.04539 -23.90311 $ 3000 \;{\rm s}$
  Ter 7 SGB 289.43484 -34.65680 $ 5400 \;{\rm s}$
  Ter 7 RGB 289.43488 -34.65773 $ 4500 \;{\rm s}$
  M 15 SGB 322.54426 12.16722 $ 2400 \;{\rm s}$
  Pal 12 RGB 326.66087 -21.25134 $ 2400 \;{\rm s}$


  
2 Observations and data reduction

The spectroscopic data were obtained in May 2002 and July 2004 at the VLT/UT4 at ESO/Paranal (Chile) with the multi-slit spectroscopy instrument FORS2/MXU. FORS2 provides a field of view of $6\hbox{$.\mkern-4mu^\prime$ }8\times 6\hbox{$.\mkern-4mu^\prime$ }8$. The observations of M 55 were obtained in 2002 and were also used for calibration purposes in a study of $\omega$ Cen (Kayser et al. 2006; Willemsen et al. 2005; Hilker et al. 2004). The observations obtained in 2004 were dedicated to CN and CH measurements in seven further Galactic globular clusters (M 15, M 22, M 55, NGC 288, NGC 362, NGC 5286, Palomar 12, and Terzan 7) spanning a large range in metallicity ( $-2.26<{\rm [Fe/H]}< -0.58~ \;{\rm dex}$). Two of the clusters (Palomar 12 and Terzan 7) are suggested to have originated from the Sagittarius dwarf spheroidal (Sgr dSph) galaxy (Bellazzini et al. 2003; Sbordone et al. 2005).

For both observing runs, the candidate stars for the spectroscopy were selected from pre-images in Johnson B and V. We selected target stars from the upper MS, the SGB, and the lower RGB in the cluster CMDs. On the RGB we focused on stars fainter than the RGB bump, the point where deep mixing is believed to set in (Charbonnel 1995; Sweigart & Mengel 1979).

We chose the grating with the ESO denotation 660I+25 (second order) with a dispersion of $0.58 \;{\rm {\AA} \; pix^{-1}}$. The spectral region covers $\sim$3700 to $5800~\;{\rm\AA}$ including the CN band at $3885~\;{\rm\AA}$ and the G-band at $4300\;{\rm\AA}$. The final actual wavelength coverage depends on the location of the star/slit on the mask with respect to the dispersion direction. Typically we defined one slit mask per region of the CMD per cluster, containing $\sim$50-70 slits. We selected slit lengths of 4-8 $\hbox{$^{\prime\prime}$ }$ to make local sky subtraction possible. The slit width was fixed to $1\hbox{$.\!\!^{\prime\prime}$ }0$. The total exposure time per mask varied between 360 and $ 5400 \;{\rm s}$ depending on the cluster and the brightness of the target stars. To facilitate cosmic ray removal the observations were split into multiple (2-3) exposures. The central coordinates of the observed fields as well as the total exposure times are listed in Table 1. In addition to the science exposures, we obtained bias, flatfield and wavelength calibration observations.


  \begin{figure}
\par\epsfig{figure=9446fig1.ps,width=15cm,bbllx=25mm,bblly=130mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 1: Typical spectrum of a RGB ( top panel), a SGB ( middle panel), and a MS ( bottom panel) star in the globular cluster NGC 288. The regions of the measured indices are marked by darker lines. Furthermore the positions of the prominent CaII H and K and Hydrogen lines are indicated in the top panel.


  \begin{figure}
\par\hspace*{3mm}
\begin{tabular}[]{c c c}
\hspace*{-0.6cm}\psfig...
...rx=195mm,bbury=246mm}\hspace*{3cm}
\vspace*{0.9cm}\\
\end{tabular}
\end{figure} Figure 2: The color magnitude diagrams for the globular clusters in our sample. Those stars for which line strength measurements are available are marked in color. We distinguish between stars of different evolutionary states. MS stars are indicated by blue squares, SGB stars by green triangles, and RGB stars by red circles. CN-weak and CN-strong stars are denoted by open and filled symbols, respectively. Note that in all diagrams the calibrated pre-image B and V magnitudes are shown. Our sample comprises clusters spanning a wide range in metallicity ( $-2.26< {\rm [Fe/H]}<-0.58 \;{\rm dex}$). The clusters Palomar 12 and Terzan 7 are believed to be part of the Sgr dSph, which is currently being disrupted by its tidal interaction with the Milky Way.


 

 
Table 2: Reddening, distance modulus, and photometric parameters of the MSTO for our sample GCs.
Cluster EB-Va (m-M)Va $ V_{\rm MSTO}$ $(B-V)_{\rm MSTO}$
NGC 288 0.03 14.83 18.90b 0.46b
NGC 362 0.05 14.81 similar to NGC 288c
NGC 5286 0.24 15.95 20.05d 0.73d
M 22 0.34 13.60 17.70e 0.75e
Ter 7 0.07 17.05 20.96f 0.52f
M 55 0.08 13.87 17.89g 0.50g
M 15 0.10 15.37 0.50h 19.40h
Pal 12 0.02 16.47 $\sim$20.5i 0.452i
a Harris (1996); b Alcaino et al. (1997); c Bellazzini et al. (2001); d Samus et al. (1995a); e Samus et al. (1995b); f Buonanno et al. (1995); g Alcaino et al. (1992); h Durrell & Harris (1993); i Stetson et al. (1989).


The photometric data are based on the pre-image observations of the target fields in the B and V band, taken several months prior to the spectroscopic observations with FORS2 at the VLT/UT4. The identification and psf-photometry was performed on the pipeline reduced images (provided by ESO) using the the IRAF package DAOPHOT. B and V magnitudes were matched to create the CMDs. For this work, a precise photometric calibration is not necessary since we are mainly interested in a comparative study of stars in different evolutionary states, which can easily be identified in the CMDs. A rough calibration was done by adjusting the zeropoints such that the MSTO (B-V) colors and V magnitudes taken from the literature were matched (see Table 2).

Based on the location in the CMDs we assigned stars to the MS, SGB, and RGB. Figure 2 shows the CMDs for all clusters in our sample. The stars with available spectra are symbol-coded according to their position in the CMD. Only those stars are shown that were identified as radial velocity members and that passed our quality check of the spectra. For the two Sgr clusters Ter 7 and Pal 12 some stars near the RGB bump have been observed. These stars are included in the Figs. 2-4 but neglected in the further analysis.

The data reduction was carried out using standard routines within IRAF[*]. This included bias correction and flatfielding. The cleaning for cosmic rays was done with bclean from the STARLINK package. Before sky subtraction was performed the spectra from the individual exposures were stacked to improve the signal-to-noise ratio. In most cases, object and sky could be extracted from the same slit. The wavelength calibration was achieved using the emission spectra of the He-Ne-Hg-Cd arc lamps taken after each set of observations. Note that the final spectra were neither flux-calibrated nor normalized by the continuum. All spectra were binned to a spectral scale of $1\;{\rm\AA ~pix^{-1}}$. Considering the seeing the final spectral resolution (FWHM) for narrow lines is $\sim$ $ 2\;{\rm\AA}$. Typical spectra of a RGB, a SGB and a MS stars in NGC 288 are shown in Fig. 1.

For all spectra we measured radial velocities by cross-correlating them with five high quality template spectra taken from the $\omega$ Cen dataset using IRAF/fxcor. We adopted the mean value of the five measurements as the radial velocity of the star and corrected for the measured Doppler shift. The scatter of the velocity measurements is of the order of $20\;{\rm km~s^{-1}}$, which reflects the uncertainties given by the spectral resolution. In the resulting velocity distributions the globular clusters clearly stand out against the Galactic foreground. Possible non cluster member stars were identified by their radial velocities and rejected from the further analysis. In a final step, we examined each spectrum individually and rejected those spectra with bad quality (e.g., due to tracing errors). In total about 500 spectra are suitable for our analysis, whereof 120 spectra are from lower RGB stars.

Note that NGC 5286 and M 22 have quite a high foreground extinction, and probably differential reddening is broadening the giant branches (e.g., Richter et al. 1999). Most of the radial velocity members of NGC 5286 lie on the red side of the RGB sequence which might reflect their biased location west of the cluster center (pointing of the spectroscopic mask).

In the Appendix, magnitude limited samples of cluster member stars that were used for our analysis are presented (Table A.1). Only the brightest five stars of each cluster are contained in this table. The full table of all cluster stars only is available in the online version of the article.

  
3 CN and CH band strengths

For all spectra, we measured line indices covering the absorption features of the CN and CH molecules. For the CN and CH band strengths, we used the modified S3839 and CH4300 indices as defined by Harbeck et al. (2003a):

\begin{displaymath}{S3839~ ({\rm CN}) = -2.5\;\log \frac{F_{3861-3884}}{F_{3894-3910}}},
\end{displaymath} (1)


\begin{displaymath}{{\rm CH4300}= -2.5\;\log \frac{F_{4285-4315}}{0.5F_{4240-4280}+0.5F_{4390-4460}}},
\end{displaymath} (2)

where ${F_{\lambda}}$ are the fluxes in the different bandpass regions. Our error estimates assume Poisson statistics in the flux measurements.

  
3.1 CN band strength


  \begin{figure}
\par\hspace*{5mm}\epsfig{figure=9446fig10.ps,width=8cm,bbllx=25mm,bblly=60mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 3: The distribution of the stars of the different clusters in the CN vs. MV diagram. The left upper panel illustrates the overall distribution of our sample stars. In the lower panel we distinguished between different evolutionary states of the stars. The color coding of the data points corresponds to stars from the different clusters as indicated in the figure legend in the upper right. Whereas for the MS all clusters show roughly the same distribution, for the RGB the distribution shows a large scatter. For the clusters NGC 288 and NGC 362, a bimodal distribution in CN band strength is visible. In the lower left corner of the bottom panels the median errors of the measurements are shown.

In order to investigate the behavior of the strengths of the CN index as a function of evolutionary state (or stellar mass) we plotted CN against the absolute V magnitude, MV, for all clusters (Fig. 3). We adopted the distance moduli and extinction values of Harris (1996).

Looking at the whole sample of stars a wide spread in CN and a continuous increase of CN with decreasing MV can be seen in the upper panel of this figure. This is caused by the fact that the formation of molecules in stellar atmospheres strongly depends on the effective temperature, $T_{\rm eff}$, and the surface gravity, log g  of the stars. The efficiency of CN formation is higher in stars with lower $T_{\rm eff}$ and lower log g. To further illustrate this effect we subdivided our sample into MS (log g $\sim 4.5$, $T_{\rm eff}$  $\sim 6000\;{\rm K}$), SGB (log g$~\sim$ 4.5-3, $T_{\rm eff}$ $\sim$ 5000-6000$\;{\rm K}$), and RGB stars (log g $\sim 3$, $T_{\rm eff}$  $\sim
5000\;{\rm K}$). The different distributions for the different evolutionary states are shown in the lower panels. One can clearly see that the line strengths of CN on average increase as stars evolve from the MS to the RGB. This can be understood by the augmented formation of molecules in cooler atmospheres.

Looking at the globular clusters individually one recognizes that they show very different behaviors in the MV vs. CN diagram. Whereas for the MS and the SGB all clusters show roughly the same pattern, the distributions on the RGB deviate between the clusters. For some clusters like e.g., NGC 288 and NGC 362, we clearly see a bifurcation in CN band strengths as we reach the RGB. Either part of the bifurcation contains roughly equal numbers of stars. This is worth to keep in mind as the two clusters are a so called ``second-parameter pair'': both clusters have similar metallicities but show a very distinct horizontal branch morphology. In NGC 288, most of the core helium burning stars can be found on the blue horizontal branch whereas almost no stars are located on the red part. Exactly the opposite is the case for NGC 362. For this cluster the red part of the horizontal branch is densely populated. Some authors proposed that deep mixing and the consequently increased mass loss could be an explanation for the different horizontal branch morphologies as well as the observed abundance anomalies (e.g., Weiss et al. 2000). For other second parameter pairs like e.g., M 3 and M 13, which also show differences in light abundance elements this might be a possible explanation for the observed patterns. Both clusters have similar ages and metallicities. However, the RGB in M 3 is dominated by CN-weak stars, whereas the majority of stars in M 13 are found to be CN-strong (e.g., Suntzeff 1981).

Nevertheless, the fact that we do not observe significant differences in the CN distributions indicates that deep mixing cannot be a major cause of the horizontal branch morphology. Similarly, based on the CN and CH measurements of stars in the second parameter globular cluster NGC 7006, Harbeck et al. (2003b) argued against the hypothesis that CN-variations are directly correlated with the second parameter effect. They found the scatter in CN to be similar to those in other GCs of the same metallicity but different horizontal branch ratios.

In contrast to NGC 288 and NGC 362, the clusters Ter 7, Pal 12, and M 55 seem to exhibit no or only very few stars with strong CN band strengths. In the clusters NGC 5286, M 22, and M 15, stars can be found on both the CN-weak and the CN-strong regime in this diagram. For M 15 and M 22, the majority of the stars are associated with the CN-weak group. For NGC 5286, we have only six measurements. Four of these stars are found to be CN-strong and two CN-weak.

We cannot assess whether similar abundance variations on the SGB and the MS region are not present or can not be detected due to a too weak signal caused by the higher effective temperatures of these stars. The observed scatter in the CN measurements of MS and SGB stars (rms $\sim$ 0.13 and 0.14, respectively) is found to be of the same order as the errors in the index measurements (0.17 and 0.13, respectively).

CN as a double-metal molecule is easier to observe in more metal-rich clusters due to the stronger equivalent widths at higher metallicities. Our work as well as former studies on the RGB show that whatever process is responsible for the formation of the CN-strong stars, it seems to occur in the majority of Galactic globular clusters. In contrast to this, in both fairly metal-rich Sgr dSph clusters (Pal 12 and Ter 7) we found no sign for this process to be present. All stars in these clusters are located in the CN-weak branch in Fig. 3. From the fact that, if present, CN-strong stars should show up easily in these clusters we infer that they actually lack those stars. This suggests that probably the environment in which the clusters formed had an effect on the presence or absence of the CN variations. However we point out that possible effects of the small sample size cannot be ruled out. Preliminary results from low resolution spectra of seven giants in Arp 2 and Ter 7 suggest star to star variations in the CN band strength in these clusters (Briley et al. 2007).

  
3.2 CN vs. CH

The CN vs. CH diagram also allows us to study CN bimodalities. In Fig. 4 (left panel) we plot the measured CN vs. the CH band strengths for the RGB stars in our sample clusters. The overall patterns found for RGB stars in Fig. 3 also show up in Fig. 4. A clear bifurcation into two branches is detected in the CN vs. CH diagram for stars on the RGB. NGC 288 and NGC 362 show the strong bimodality in the distribution of CN line strength, seen before. In contrast, the RGB data points of Ter 7 and Pal 12 again are both located on the CN-weak branch in Fig. 4. Due to their fairly high metallicities these clusters are found in the CH-strong regime in this diagram. It seems as if the two Sgr clusters are more homogeneous in their CN abundances than the Galactic globular clusters in our sample.


  \begin{figure}
\par\hspace*{5mm}\epsfig{figure=9446fig11.ps,width=8cm,bbllx=25mm,bblly=150mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 4: The distribution of the stars in the CN vs. CH diagram for the RGB star in our sample clusters. The stars of different clusters are indicated by different colors as listed in Fig. 3. The left panel illustrates the overall distribution of our sample stars, with a typical error given in the lower right corner. The solid line indicated a possible differentiation between CN-strong and CN-weak stars in this diagram, drawn by eye. In right panel we calculated the mean CN and CH of both the CN-strong and CN-weak stars. The original overall distribution is plotted in gray, while the mean values are color-coded as defined before.

Interestingly, the stars in M 15, which showed no indication for a bifurcation in Fig. 3, show a weak indication of a bimodal distribution (two clumps separated at $\rm CN\sim-0.6$) in the CN-CH plane (Fig. 4). However, this needs further confirmation since the observational errors of such weak lines are large compared to the separation of the two clumps. Assuming that the clump at $\rm CN=-0.5$ and $\rm CH=1.65$ defines the CN-rich population, this would strongly change the number ratio of CN-strong to CN-weak stars in M 15 (see next section). In order to further illustrate the dichotomy in this plot we separated CN-strong from CN-weak stars (see Fig. 4 right panel) and calculated the mean CN- and CH-indices for each sub-population in the different clusters (large dots).

As we introduced earlier, one of the scenarios proposed to explain the variations in C and N in RGB stars in globular clusters is the dredge-up of material processed in the CNO cycle. In our case, the origin of the observed patterns/bimodalities can not only lie in such mixing effects as the analyzed stars are considerably fainter than the red bump at which the deep mixing mechanism is expected to set in. Although we did not find evidence for CN bimodalities among our SGB and MS stars (cf. Harbeck et al. 2003a) we favor a scenario in which the cluster formed out of chemically inhomogeneous material that was polluted by the outflows of fast rotating massive stars or AGB stars (e.g., Ventura et al. 2001; Cottrell & Da Costa 1981; Decressin et al. 2007).

  
3.3 Cyanogen excess parameter ($\delta $CN)

As a measure to quantify the wide range of CN line strengths we used a CN excess parameter ( ${\rm\delta CN}$) similar to the one introduced by Norris & Smith (1981). This minimizes the effects of effective temperature and surface gravity existent in the CN measurements. The ${\rm\delta CN}$ parameter is defined as the CN strength with respect to a baseline. This baseline is defined by the lower envelope fitted for each individual cluster in the CN vs. MV distribution. The left panel in Fig. 5 illustrates the baseline fit and the right panel shows the resulting ${\rm\delta CN}$ vs. MV distribution for the cluster NGC 288.

In the previous sections we saw that the bimodality is only clearly detected for stars on the lower RGB. Therefore, in the following we concentrate on this part of the CMD. Figure 6 shows the histograms of the CN excess parameter for the RGB stars in all eight globular clusters in our sample, sorted by their metallicity. We selected a bin width of 0.13, comparable to the median uncertainties of the CN index for these stars.


  \begin{figure}
\par\hspace*{4mm}\epsfig{figure=9446fig12.ps,width=8cm,bbllx=25mm,bblly=150mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 5: Left: the MV vs. CN diagram for the RGB (red), SGB (green), and MS (blue) stars for the cluster NGC 288. The bimodal distribution is clearly visible. The dashed line illustrates the lower envelope fitted to this distribution. Right: plotted is MV vs. the CN excess parameter ${\rm\delta CN}$. Stars with ${\rm\delta CN}$ > 0.46 are defined as CN-strong and indicated by filled circles. CN-weak stars are indicated by open circles. The solid line indicates the separation between CN-strong and CN-weak stars.


  \begin{figure}
\par\hspace*{1.5cm}\scalebox{1}[1]{\includegraphics*[viewport=30 45 499 547]{9446fig13.ps}}
\end{figure} Figure 6: Distributions of CN-band strength in the RGB stars of our sample clusters. The histograms of the CN-excess parameter ${\rm\delta CN}$ are plotted. The clusters are sorted by their metallicity. The two fairly metal-rich Sgr clusters are found in the two uppermost panels. The very CN-strong star in M 15 lies slightly off the RGB and therefore is probably not a cluster member.

Most of the metal-poor clusters (M 15, M 55, and M 22) show a distinct main CN-weak peak with a weak extension towards higher ${\rm\delta CN}$ values. For NGC 5286, we observe a fairly flat distribution. However, due to the small sample size we cannot definitely comment on any distribution pattern. For NGC 288 and NGC 362, which have similar intermediate metallicities, the bimodal distribution clearly shows up in these plots. Both peaks are roughly equally pronounced. The two probable Sgr dSph clusters (Pal 12 and Ter 7) show a single peak and a fairly broad distribution around the CN-weak peak. The spanned ranges in ${\rm\delta CN}$ of about 0.45 and 0.53 for Ter 7 and Pal 12 are comparable with the ranges of 0.54 and 0.48 for M 55 and M 15 (excluding the extremely CN-strong outlier in the last cluster) which at first glance might point to a similar enrichment history of those clusters, despite their very different metallicities and environments they live in. However, the apparent broadness observed in M 15 and M 55 is mainly due to the metal-poor nature of these clusters, resulting in larger errors in determining their CN strength. In contrast, for the metal-rich clusters Pal 12 and Ter 7, CN-strong stars and a bimodality are expected to clearly show up in these diagrams, if present. This makes the chemical patters of the Sgr clusters appear different from those of galactic clusters of similar metallicities (e.g., 47 Tuc) that show more pronounced CN spreads and/or bimodality.

In Fig. 7 we show combined histograms for the ${\rm\delta CN}$ measurements of the clusters in our sample. We distinguish between a histogram of all eight clusters and one where we did not include the two Sgr dSph clusters, Ter 7 and Pal 12. In both cases a clear bimodal distribution is visible. As Ter 7 and Pal 12 are of extragalactic origin we focused on the histogram based on six globular clusters. This distribution was used for the differentiation between CN-strong and CN-weak stars. We fitted a double Gaussian to the distribution and selected the minimum as the differential criteria between CN-strong and CN-weak stars. CN-strong stars are then those that have a CN excess greater than ${\rm\delta CN}$ = 0.46.


  \begin{figure}
\par\hspace*{5mm}\epsfig{figure=9446fig14.ps,width=7.3cm,bbllx=25mm,bblly=60mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 7: Combined histograms of the CN-excess parameter for the clusters in our sample. The gray histogram comprises all eight clusters. In the black histogram Pal 12 and Ter 7, which are believed to belong to the Sgr dSph, are not included. Here we only consider stars on the lower RGB. ${\rm\delta CN}$ shows a bimodal distribution, which was fitted by two Gaussians. The minimum between the two Gaussians was chosen as the criterion to differentiate between CN-strong and CN-weak stars.

To quantify the observed bimodality in the CN line strength, we determined the parameter r introduced by Norris (1987). It gives the number ratio of CN-strong to CN-weak stars,

\begin{displaymath}{r} = N_{\rm strong}/N_{\rm weak}.
\end{displaymath} (3)

Errors in r have been estimated from statistical uncertainties (adopting $\Delta N = \sqrt{N}$):

\begin{displaymath}\Delta {r} = r \sqrt{1/N_{\rm weak} + 1/N_{\rm strong}},
\end{displaymath} (4)

where $N_{\rm weak}$ and $N_{\rm strong}$ give the number of CN-weak and CN-strong stars, respectively.


 

 
Table 3: CN number ratios.

Cluster
$\frac{\rm CN_{weak}}{\rm CN_{strong}}$ $r_{\rm lower RGB}$ $r_{\rm upper RGB}$
NGC 288 9/7 $0.78\pm0.39$  
NGC 362 9/11 $1.22\pm0.55$ 2.46a
NGC 5286 2/4 $2.00\pm1.73$  
NGC 6656 (M 22) 10/6 $0.60\pm0.31$ 0.41b
Ter 7 14/0 $0.00\pm0.00$  
NGC 6809 (M 55) 13/2 $0.15\pm0.12$ 0.22c
NGC 7078 (M 15) 18/1 $0.06\pm0.06$  
  (12/7) ($0.60\pm0.29$)  
Pal 12 13/1 $0.07\pm0.07$  
NGC 104 (47 Tuc)   1.90d 1.8d
NGC 6839 (M 71) 13/9 0.69e 1.0e, 0.63g, 0.3h
NGC 1904 (M 79)     2.6b
NGC 2808     2.4f
NGC 3201     1.1f
NGC 5272 (M 3)     0.6f
NGC 5904 (M 5)     3.0f
NGC 6121 (M 4)     1.4f
NGC 6171 (M 107)     1.4f
NGC 6205 (M 13)     3.2f
NGC 6254 (M 10)     0.5f
NGC 6637     1.2f
NGC 6752     1.6f
NGC 6934     0.6f
NGC 7006     2-3.5b
NGC 7089 (M 2)     3.8f
a Smith & Mateo (1990);
b Harbeck et al. (2003b);
c Norris (1987);
d Briley (1997);
e Lee (2005);
f Smith (2002);
g Cohen (1999);
h Penny et al. (1992).


For subsequent analysis, we included two additional data from literature sources. Briley (1997) determined the ratio of CN-strong to CN-weak stars for stars on the RGB in 47 Tuc. He distinguishes between RGB stars below and above the RGB bump and found very similar values of 1.9 and 1.8, respectively. For this work, we adopted the value of 1.9. Penny et al. (1992) and Lee (2005) find the r-parameter in the cluster M 71 for stars on the lower RGB to be 0.8 and 0.69, respectively. We adopted the more recent result by Lee (2005). The measurements of the number ratio of CN-strong stars on the upper RGB of M 71 range between 0.3 (Penny et al. 1992), 0.63 (Cohen 1999), and 1.0 (Lee 2005). The average value is 0.64, similar to those found on the lower RGB. Nevertheless, we have to keep in mind that the additional r-parameters are based on observations obtained with a different instrument and different index definitions.

In the upper part of Table 3, an overview of the number of stars identified as CN-strong and CN-weak is given. In the third column the r-parameters for the lower RGB of our clusters and M 71 and 47 Tuc are listed. The r-parameters range from 0.0 for Ter 7 to 2.00 for NGC 5286. The uncertainties vary from 0.07 for Pal 12 to 1.73 for NGC 5286. The large uncertainty for NGC 5286 is due to the small sample size. If one divided the stars of M 15 into CN-weak and CN-strong according to Fig. 4, its r-parameter would be 0.6 (given in brackets in Table 3). For those clusters that were part of previous studies, the r-parameters for the upper RGB are given in the last column. We find for two out of the three clusters of our sample, for which RGB studies exist, good agreement of the number ratios found on the SGB with those on the RGB. The values for NGC 362 differ by a factor of 2. The reason for this remains unclear and requires the repetition of the measurement on the RGB.

  
4 CN-CH-anticorrelation

In many clusters the bimodal distribution in CN is accompanied by an anticorrelation of CN and CH. A summary of this can be found in e.g., Kraft (1994). As these abundance patterns are similar to those expected by the nucleosynthesis of material in the CNO cycle, they have been attributed to a dredge-up of processed material to the stellar surfaces. In the meantime CN-CH anticorrelations have been found to be very common for clusters with a bimodal distribution in CN (see, e.g., the recent review paper by Gratton et al. 2004).

To examine possible CN-CH anticorrelations we used the distinction criteria between CN-strong and CN-weak RGB stars as described in Sect. 3.1. Although no clear bimodality in CN absorption strength was detected on the SGB and MS, we observe scatter in CN more than expected from measurement errors alone in all evolutionary states.

Since CN dichotomies have been detected before on the MS on M 13 (Briley et al. 2004), 47 Tuc (Harbeck et al. 2003a), and M 71 (Cohen 1999), it is quite conceivable that abundance variations among the less evolved stars exist in our sample as well. At the precision of our measurements, however, the signal might simply be too weak due to the higher temperatures and/or low metallicities, which inhibit the formation efficiency of the CN molecule. Nevertheless, to check for anticorrelations, we determined the CN excess parameter for the SGB and MS stars analogously to the RGB stars. The resulting ${\rm\delta CN}$ distributions are shown in Fig. 8. In analogy to the RGB analysis we neglected the Sgr clusters Pal 12 and Ter 7. The median ${\rm\delta CN}$ values were found to be 0.20 both for the SGB and MS. The standard deviation is 0.08 in both cases. We considered those stars with ${\rm\delta CN}$ higher than $1\sigma$ above and below the median as CN-strong and CN-weak, i.e. CN-strong: ${\rm\delta CN}$ >  $ {\rm median}+\sigma$; CN-weak: ${\rm\delta CN}$ <  $ {\rm median}-\sigma$.


  \begin{figure}
\par\hspace*{5mm}\psfig{figure=9446fig15.ps,width=8cm,bbllx=25mm,bblly=150mm,bburx=200mm,bbury=246mm}
\end{figure} Figure 8: The combined distributions of the CN excess parameters measured for stars on the SGB and MS. The gray histogram comprises all eight clusters. In the black histogram Pal 12 and Ter 7 are not included. The solid lines indicate the median values of the distributions. The dashed lines indicate the selection limits for CN-strong and CN-weak stars. Stars with ${\rm\delta CN}$ smaller than the position of the first dashed line are considered as CN-weak, stars with ${\rm\delta CN}$ larger than the position of the second dashed line as CN-strong.

A comparison of CN vs. MV and CH vs. MV is shown in Fig. 9. We differentiate between RGB, SGB, and MS stars for all clusters. Furthermore, we distinguish between stars with strong, weak, and intermediate CN absorption band features. A bimodal distribution in CH is not detected for any of the clusters. Note that even for NGC 288 and NGC 362, which showed the strongest dichotomy in CN, we do not observe a bimodality in CH. However, the CN-strong RGB stars of these two GCs clearly have smaller CH indices than the CN-weak RGB stars of similar MV. This is not seen for the other clusters, except maybe for NGC 5286. In the case of M 22, larger uncertainties due to the significant differential reddening (Richter et al. 1999) might dilute a possible CN-CH anticorrelation. In the very metal-poor cluster, M 15, one RGB star with high CN absorption bands was identified, which also seems to be quite rich in CH. This CN- and CH-strong star in M 15 stands out from the rest of the datapoints by more than 1 in  ${\rm\delta CN}$. Since this star lies slightly off the RGB, we suggest that this star is not a cluster member (although it has the right radial velocity).

Moving from the RGB to the SGB and the MS, the CN-CH anticorrelation is still visible for NGC 288 and NGC 362. Due to the lower signal to noise ratio, it is less pronounced but on average the more CN-strong stars are CH-weaker. For the other clusters, no clear statement can be made.

We conclude that, in the case of clearly bimodal clusters like NGC 288 and NGC 362, the differences in the band strengths and the CN/CH anticorrelation do exist among stars of all evolutionary states. Deep mixing is believed to set in at the level of the RGB bump and does not take place in stars on the lower RGB, SGB, and MS. Furthermore, low-mass MS stars burn hydrogen only in their cores. Thus the observed patterns cannot be caused by the transport of CNO cycle processed material from the interior to the stellar surfaces. We can therefore rule out evolutionary effects within the stars as the origin of the observed anticorrelation.


  \begin{figure}
\par\hspace*{2mm}
\begin{tabular}[]{c c}
\psfig{figure=9446fig16....
...t=18cm,bbllx=110mm,bblly=60mm,bburx=550mm,bbury=246mm}\end{tabular}
\end{figure} Figure 9: The CN vs. MV and CH vs. MV diagrams for the eight clusters in our sample. We differentiate between RGB, SGB, and MS stars for all clusters. The CN-strong and CN-weak stars are marked by filled and open symbols, respectively. SGB and MS stars with intermediate ${\rm\delta CN}$ strength are plotted as crosses. For reasons of clarity these stars are only plotted in the CN vs. MV diagrams. The median error of the measurements are given in the upper left corners of each panel. We do not plot the errors for SGB and MS stars in Pal 12 as they exceed the limit of the diagrams.


 

 
Table 4: Global parameters of globular clusters of our sample.
Cluster $D_{\rm GC}^{1a}$ MVa HBR2a [Fe/H]a c3a e4a $r_{\rm core}^{5a}$ $r_{\rm tidal}^{6a}$ $\mu_{0,V}^{7a}$ $\sigma^{8b}$ (M/L)b Agec,d Classf
  (kpc) (mag)   (dex)     (pc) (pc) (mag/ $\hbox{$^{\prime\prime}$ }^2$) (km s-1)     (Gyr)
NGC 288 12.0 -6.74 0.98 -1.24 0.96 0.09e 3.64 33.12 19.95 2.9 3.0 11.3 OH
NGC 362 9.4 -8.41 -0.87 -1.16 1.94 0.01 0.47 39.83 14.88 6.4 1.1 8.7 YH
NGC 5286 8.4 -8.61 0.80 -1.67 1.46 0.12 0.93 26.75 16.07 8.0 2.1 NA OH
M 22 4.9 -8.50 0.91 -1.64 1.31 0.14 1.32 26.97 17.32 9.0 3.3 12.3 OH
Terzan 7 16.0 -5.05 -1.00 -0.58 1.08 NA 4.12 49.06 20.65 NA NA 7.4 SG
M 55 3.9 -7.55 0.87 -1.81 0.76 0.02 4.36 25.10 19.13 4.9 3.4 12.3 OH
M 15 10.4 -9.17 0.67 -2.26 2.50 0.05 0.21 64.42 14.21 12.0 2.2 12.3 YH
Palomar 12 15.9 -4.48 -1.00 -0.94 1.94 NA 1.11 96.78 20.59 NA NA 6.4 SG
47 Tuc 7.4 -9.42 -0.99 -0.76 2.03 0.09 0.52 56.1 14.43 11.5 2.0 10.7 BD
M 71 6.7 -5.60 -1.00 -0.73 1.15 0.00 0.73 10.43 19.22 2.3 1.1 10.2 BD
NGC 1904 18.8 -7.86 0.89 -1.57 1.72 0.01 0.60 31.3 16.23 5.4 2.2 11.7 OH
NGC 2808 11.1 -9.39 -0.49 -1.15 1.77 0.12 0.73 43.42 15.17 13.4 2.4 9.3 OH
NGC 3201 8.9 -7.46 0.08 -1.58 1.30 0.12 2.08 41.38 18.77 5.2 4.1 11.3 YH
NGC 5272 12.2 -8.93 0.08 -1.57 1.84 0.04 1.66 115.5 16.34 5.6 1.2 11.3 YH
NGC 5904 6.2 -8.81 0.31 -1.27 1.83 0.14 0.92 61.96 16.05 5.7 1.4 10.9 OH
NGC 6121 5.9 -7.20 -0.06 -1.20 1.59 0.00 0.53 20.79 17.88 4.2 2.6 11.7 OH
NGC 6171 3.3 -7.13 -0.73 -1.04 1.51 0.02 1.01 32.47 18.84 4.1 3.9 11.7 OH
NGC 6205 8.7 -8.70 0.97 -1.54 1.51 0.11 1.75 56.4 16.80 7.1 2.2 11.9 OH
NGC 6254 4.6 -7.48 0.98 -1.52 1.40 0.00 1.10 27.49 17.69 6.6 3.5 11.8 OH
NGC 6637 1.9 -7.64 -1.00 -0.70 1.39 0.01 0.90 22.10 16.83 NA NA 10.6 BD
NGC 6752 5.2 -7.73 1.00 -1.56 2.50 0.04 0.20 64.39 15.20 4.5 1.1 12.2 OH
NGC 6934 12.8 -7.46 0.25 -1.54 1.53 0.01 1.14 38.23 17.26 5.1 2.5 9.6 YH
NGC 7089 10.4 -9.02 0.96 -1.62 1.80 0.11 1.14 71.75 15.92 8.2 1.9 NA OH
NGC 7006 38.8 -7.68 -0.28 -1.63 1.42 0.01 2.90 76.54 18.50 NA NA NA YH
1 Distance from Galactic center; 2 horizontal branch ratio: HBR=(B-R)/(B+V+R); 3 concentration; 4 ellipticity e=1-(b/a); 5 core radius; 6 tidal radius; 7 central surface brightness; 8 central velocity dispersion; a Harris (1996); b Pryor & Meylan (1993); c Rosenberg et al. (1999); d Buonanno et al. (1998); e Frenk & Fall (1982); f Mackey & van den Bergh (2005).



  \begin{figure}
\par\hspace*{5mm}\psfig{figure=9446fig18.ps,height=23cm,bbllx=30mm,bblly=60mm,bburx=150mm,bbury=246mm}
\end{figure} Figure 10: The number ratio of CN-strong to CN-weak stars (r-parameter) vs. various cluster parameters (see Table 4). Our targets are indicated by the filled circles. The two results taken from the literature are marked by open triangles. Red, blue, yellow, and green colors indicate OH, YH, BD, and Sgr GCs, respectively. In the upper left corner the calculated Spearman rank correlation coefficient is given.

  
5 Trends with cluster parameters

To explore possible correlations of the CN distribution with global parameters of the globular clusters, we combine our observations to quantities available in the literature. A similar analysis has been done before by, e.g., Norris (1987), Smith & Mateo (1990), Smith (2002), and Harbeck et al. (2003b). However their studies were based on compilations of upper RGB star measurements in various clusters from different sources and therefore different techniques. We now provide a sample that is based on a very homogeneous data set of eight star clusters. The cluster quantities were selected from the 2003 version of the McMaster (Harris 1996) and Pryor & Meylan (1993) globular cluster catalogs[*]. As no ellipticity is listed in these catalogs for NGC 288, we adopted the value given by Frenk & Fall (1982). The age estimates were adopted from Rosenberg et al. (1999) and Buonanno et al. (1998). Moreover, we adopted the subdivision of our globular clusters into objects belonging to different Galactic components (namely OH, YH, BD, and those accreted from the Sgr dSph (SG)) from Mackey & van den Bergh (2005). Table 4 gives an overview of the extracted parameters.

To quantify the statistical significance of possible correlations between the number ratio of CN-strong stars with various structural parameters, we computed the Spearman coefficient of rank correlation ($r_{\rm s}$) for each parameter. This correlation coefficient is a technique that can be used to characterize the strength and direction of a relationship of two random variables. The values of $r_{\rm s}$ lie between +1 and -1, the extremes where the rank sequences completely coincide and are completely opposite, respectively. For the clusters in our sample we do not find a clear correlation between the majority of the cluster parameters and the percentage of CN-strong stars (Fig. 10).

Norris (1987) observed a correlation between the percentage of CN-rich stars and the apparent flattening of the individual clusters, which he proposed is associated with the clusters' rotation. He suggested that the high systematic cluster rotation is linked via exchange of angular momentum to a higher initial angular momentum of the individual stars. Within giants the rotation may drive circulation currents that are capable of cycling the material in the envelope through the interior hydrogen-burning shell where the CNO process is active (Sweigart & Mengel 1979). Consequently a higher percentage of CN-strong stars is expected to be observed in clusters with higher mean stellar rotation velocities and thus higher overall cluster rotational velocities and hence possibly higher ellipticities. Since there is little information on cluster rotation for the globulars in our sample, we use ellipticity as a proxy for rotation. This correlation was confirmed by Smith & Mateo (1990) and Smith (2002). The computed Spearman rank coefficient of 0.26 suggests that the number ratio of CN-strong stars is mostly independent of the cluster ellipticity. We conclude that the effect proposed by Sweigart & Mengel (1979) is probably not as relevant as thought so far.

Another correlation detected by Smith & Mateo (1990) is between the r-parameter and the central velocity dispersion. Our analysis reveals $r_{\rm s} = -0.07$, which makes such a correlation rather unlikely. Furthermore, Smith & Mateo (1990) found the highest percentages of CN-strong stars to be restricted to the more luminous/massive clusters. They suggest an inter-cluster self-pollution scenario as a possible origin. Due to the higher binding energies in more massive clusters, the ability to retain enriched ejecta of massive and intermediate-mass stars is expected to be higher than in lower mass clusters. Our cluster sample supports the correlation with the total absolute magnitude (MV). The calculated Spearman coefficient of $r_{\rm s}=-0.48$ is actually among the highest found in our analysis.

We furthermore determined the Spearman rank correlation coefficients using the alternative higher number ratio of M 15 (see Sect. 3.2). Although most of the changes are small, some correlations show a higher significance, in particular for MV with $r_{\rm s}=-0.62$. Since the results for NGC 5286 suffer from small number statistics and thus a large error in $r_{\rm s}$, we decided to also recalculate the correlation coefficients by neglecting this cluster (using the original value for M 15). The resulting values are comparable to those considering all clusters. An overview of the computed Spearman rank coefficients is given in Table 5.

For a more statistically complete investigation, we combined our results with those by Smith (2002) and Harbeck et al. (2003b). In Sect. 3.1 we have seen that for the majority of the studied clusters the r-parameter on the upper RGB is consistent with those on the lower RGB. We are thus confident that we may combine our results with those from the literature. Nevertheless we keep in mind that this leads to a more heterogeneous sample, since values of different evolutionary states and different measurements are combined.

For most parameters the lack of any clear trends is confirmed. In particular, the inclusion of our results with those listed in Smith (2002) and Harbeck et al. (2003b) further confirms the lack of a correlation between cluster ellipticity $\epsilon$ and the number ratio of CN-strong stars. We observe a large scatter in Fig. 11 (lower right panel). It can, however, not be ruled out that some clusters with low $\epsilon$ and high r values are actually more elliptical but appear round due to projection effects. This would dilute a possible correlation. GCs with high $\epsilon$and low r values would then be clear outliers.

We see a possible connection between the r-parameter and the tidal radius (Fig. 11, lower left panel). Clusters with larger tidal radii seem to possess a higher percentage of CN-strong stars. Interestingly, those clusters that do not follow this trend are those that are thought to be linked to the Sgr dSph (Palomar 12 and Terzan 7), as well as the very metal-poor clusters M 15 and NGC 5272, which belong to the young halo GCs. We computed the Spearman coefficient including and excluding these cluster. The resulting values are 0.19 and 0.67, respectively. This is an interesting finding, since Zinn (1993) postulated that the young halo population of globular clusters was predominantly formed by accretion of extragalactic objects. We therefore put forward the hypothesis that, among other parameters, environmental differences due to different cluster formation sites may influence the today observed abundance patterns. Carretta (2006) showed that, apart from differences in the environmental properties during the time of formation also differences in the evolution of clusters have probably influenced the light element abundance ratios. Using a set of high-resolution spectroscopic abundance measurements he found that clusters with larger orbital semi major axes, i.e., extended orbits and revolution periods, exhibit a larger amount of inhomogeneities. From this he concluded that, for clusters on orbits reaching large Galactocentric distances, the lack of disturbance by the Galactic disk helps to retain pre-enriched material. In contrast, clusters close to the Galactic center might have suffered early and frequent disk/bulge shocks that enforced rapid gas loss and prohibited the formation of a second enriched subpopulation. Those clusters also show smaller tidal radii due to the even stronger tidal forces towards the center of the Galaxy.

In the upper right panel of Fig. 11, we plotted the r-parameter as a function of the absolute magnitude, representing the present-day cluster mass. It seems that the maximum number ratio of CN-strong to CN-weak stars increases with increasing MV (cf. Smith 2002). Only the brightest clusters have formed CN-strong stars. This supports the idea that the more massive objects can more efficiently retain processed material ejected from evolved stars.

The possible CN-bimodality of M 15 as described in Sect. 3.2 and shown in Fig. 4 increases the r-parameter of this cluster to 0.6. As a consequence the correlations of r with absolute magnitude, MV and tidal radius, ${r_{\rm t}}$ become slightly more significant with Spearman rank values of $r_{\rm s}=-0.56$ and -0.68, respectively. The low correlations with central velocity dispersion and ellipticity, however, remain nearly unchanged. More accurate CN/CH index measurements of this very metal-poor cluster are needed to confirm these findings.

 

 
Table 5: Calculated Spearman rank correlation coefficients.
  All clusters Alternative value Without
    for M 15 NGC 5286
$\mu_{0,V}$ -0.42 -0.58 -0.38
c $\;\;\; 0.10$ $\;\;\; 0.24$ $\;\;\; 0.07$
$r_{\rm core}$ -0.31 -0.48 -0.30
$\sigma$ -0.03 $\;\;\; 0.05$ -0.14
$r_{\rm tidal}$ -0.35 -0.27 -0.27
MV -0.48 -0.62 -0.43
${\rm [Fe/H]}$ -0.03 -0.12 $\;\;\; 0.10$
$D_{\rm GC}$ -0.36 -0.31 -0.38
age $\;\;\; 0.10$ $\;\;\; 0.18$ $\;\;\; 0.10$
e $\;\;\; 0.26$ $\;\;\; 0.29$ $\;\;\; 0.07$
HBR $\;\;\; 0.33$ $\;\;\; 0.36$ $\;\;\; 0.32$
M/L -0.55 -0.62 -0.57



  \begin{figure}
\begin{tabular}{cc}
\psfig{origin=rb,figure=9446fig19.ps,width=5....
...bbllx=25mm,bblly=60mm,bburx=200mm,bbury=246mm}\\
\end{tabular}\par
\end{figure} Figure 11: Plot of the r-parameter vs. those globular cluster parameters that showed a promising correlation in Fig. 10 or in previous studies by e.g., Smith (2002), such as ellipticity, central velocity dispersion ( $\sigma _{\rm vel}$), absolute brightness (MV), and tidal radius  ${r_{\rm t}}$. We also include the results by Smith (2002) (triangles). The results of our study are plotted as filled circles. In this figure we furthermore differentiate between the different MW cluster populations. Old and young halo clusters are colored in red and blue, respectively. Bulge and disk clusters are plotted in yellow and accreted clusters from dwarf galaxies, such as the Sagittarius dSph, in green. The open blue circle indicates the alternative value of the r-parameter for M 15.

  
6 Summary and conclusions

We analyzed the absorption bands of the CN and CH molecule in eight Galactic globular clusters via line index measurements. In each cluster, stars of various evolutionary stages were studied, from the lower RGB and SGB to the upper MS. Our sample comprises clusters belonging to different Milky Way components, e.g., young and old halos. In particular, two of our studied objects are associated with a disrupting Galactic companion, the Sagittarius dwarf spheroidal (Sgr dSph). We could show that the majority of the studied clusters shows significant CN/CH variations at the base of the RGB. For the two most prominent CN-bimodal GCs, NGC 288 and NGC 362, CN anticorrelates with CH. A weak signal for a CN/CH anticorrelation was detected also in the least evolved stars in these clusters. From this we conclude that purely evolutionary effects within the stellar interior cannot be the main driver of the observed abundance patterns. Our findings therefore favor a scenario in which a certain fraction of most clusters was formed out of material that was enriched or polluted by ejecta of a prior generation of massive stars. In fact, the existence of star-to-star variations among those slightly evolved stars favors self-enrichment as the probable origin. One possible explanation could be that the stars observed nowadays in globular clusters formed from protocluster material that was to some degree inhomogeneously enriched in light elements. Such a pollution might have originated from ejecta of a prior generation of massive and therefore fast evolving stars, either belonging to the cluster itself or to the field population of a larger (dwarf sized) galaxy in which the cluster was embedded (e.g., Bekki et al. 2007). Possible candidates for the polluters discussed in the literature are massive AGB stars (e.g., Ventura et al. 2001; Cottrell & Da Costa 1981) and more recently fast rotating massive stars (Decressin et al. 2007). AGBs eject material via slow winds that are processed through the hot CNO cycle but are not enriched in iron. Fast rotating massive stars lose large amounts of material through slow winds, which are also enriched in H-burning products.

For the clusters NGC 288 and NGC 362, we found a clear bimodal distribution in CN with similar numbers of CN-strong and CN-weak stars. As the two clusters are a second-parameter pair, we conclude that the horizontal branch morphology is not correlated with this phenomenon. A possible explanation for such a pronounced dichotomy is given by a prolonged star formation in these globular clusters. The second, enriched stellar population formed well after the first generation had expelled and homogeneously distributed their AGB ejecta. The existence of such multiple stellar populations within globular clusters is further supported by the recent discoveries of complex CMD morphologies (e.g., multiple SGBs and MSs with age spreads) in some massive objects (Piotto et al. 2007; Bedin et al. 2004).

The two probable former Sgr dSph clusters (Terzan 7 and Palomar 12) do not exhibit any CN-strong stars. They are the most metal-rich clusters in our sample, so the double metal molecule CN should be easy to detect. We conclude that these clusters might lack stars with strong CN absorption. Our results suggest that the accreted Sgr globular clusters might be more chemically homogeneous than those native to the Milky Way. This is supported by the abundance analysis of 21 elements for four Sgr stars by Cohen (2004), who do not find a significant star-to-star scatter. Probably environmental conditions during the formation of the clusters played a major role for the observed abundance pattern. However, we point out that all existing studies suffer from small number statistics. Thus it cannot be ruled out that CN-rich stars are simply missed in the sampling (see the preliminary results by Briley et al. 2007). For more conclusions a thorough investigation of the abundance patterns other probable Sgr clusters (M 54, Arp 2, Ter 7, Ter 8, and Pal 12) is desirable.

To search for possible drivers for the abundance anomalies we studied the ratio of CN-strong/CN-weak stars as a function of various cluster parameters. We do not confirm the correlation with the cluster ellipticity that was observed before (Norris 1987). Our study therefore does not support cluster rotation and the associated enhanced deep mixing (Sweigart & Mengel 1979) as a main source of the production of CN-strong stars. Although we hardly see correlations in the number ratio of CN-strong stars with the majority of cluster parameters, some dependencies do seem to exist. We find evidence of an increase in the CN-strong star fraction with cluster tidal radius. Since GCs with large tidal radii are mostly found in the weak tidal field of the Galaxy (well outside the bulge and disk potential), they might occupy orbits that avoid bulge/disk shocks. Thus they might keep their gas longer, which favors the build-up of a second generation of enriched stars. Furthermore, we find that preferably the more luminous/massive clusters exhibit a large number of CN-strong stars. This may be an indication that the CNO processed ejecta could be more efficiently retained by more massive objects, independent of their tidal radius. The picture emerges that there are two basic channels that lead to a high fraction of CN-rich stars in GCs: 1) the cluster formed and lived in a remote environment, which allowed it to keep/regain its gas; and 2) the gravitational potential of the cluster itself was large enough to trap the enriched ejecta of slow velocity winds out of which a new generation of stars was formed.

Interestingly, those clusters that do not follow the observed trend are either associated with the young halo or accreted from the Sgr dSph. This might indicate that, as third parameter, the environmental conditions in which the clusters formed might had a non-negligible influence on the abundance patterns we observe today.

Nevertheless we point out that our study is limited to a small sample of clusters. For a statistically better supported study, a larger cluster sample is necessary. Furthermore, a complete set of cluster parameters is needed to search for the significance of the CN-CH differences between genuine halo globular clusters and accreted objects.

Acknowledgements
The authors thank the referee for the useful comments and suggestions. A.K. and E.K.G. gratefully acknowledge support by the Swiss National Science Foundation through the grants 200020-105260 and 200020-113697. M.H. acknowledges support from a German Science Foundation Grant (DFG-Projekt HI-855/2).

Appendix A: List of spectroscopic sample stars

The following table contains a magnitude limited list (five stars per cluster) of our spectroscopic sample stars. They are ordered by increasing V magnitude. The columns are as follows:

Column 1. Identification of the object, giving the name of the globular cluster followed by a number which is ordered with increasing V magnitude.

Column 2. Right ascension for the epoch 2000 in decimals.

Column 3. Declination (2000) in decimals.

Column 4. Apparent V magnitude as determined by PSF photometry with DAOPHOT II under IRAF.

Column 5. B-V color from PSF photometry.

Column 6. Measured CN band strength.

Column 7. Error in measured CN band strength.

Column 8. Measured CH band strength.

Column 9. Error in measured CH band strength.

Column 10. Calculated CN-excess parameter ${\rm\delta CN}$.

Column 11. Radial velocity as determined from cross-correlation with FXCOR under IRAF and not corrected for systematic errors. Thus, these velocities are only indicative.

Column 12. ``Type'' describes to which part of the CMD the star most probably belongs: RGB = red giant branch, HB = horizontal branch, SGB = sub giant branch, MS = main sequence.

Note: The full table of analyzed stars only is available in the online version of the article.

 

 
Table A.1: List of spectroscopic sample stars, ordered by increasing V magnitude.
Id $\alpha$(2000) $\delta $(2000) V B-V CN dCN CH dCH ${\rm\delta CN}$ $v_{\rm rad}$ Type
NGC 288-001 13.23449 -26.53142 16.83 0.76 -0.493 0.105 2.291 0.056 0.303 -90.9 RGB
NGC 288-002 13.22360 -26.59697 16.97 0.78 -0.546 0.094 2.288 0.052 0.252 -91.1 RGB
NGC 288-003 13.20552 -26.63372 17.14 0.76 -0.482 0.082 2.355 0.049 0.319 -83.4 RGB
NGC 288-004 13.22098 -26.54228 17.37 0.71 0.265 0.130 2.125 0.063 1.070 -89.1 RGB
NGC 288-005 13.22482 -26.60748 17.52 0.73 -0.004 0.120 2.124 0.063 0.803 -94.3 RGB
... ... ... ... ... ... ... ... ... ... ... ...
NGC 362-001 15.70094 -70.86414 16.73 0.81 -0.051 0.066 2.115 0.039 0.822 219.7 RGB
NGC 362-002 15.62026 -70.90492 16.74 0.80 -0.648 0.064 2.243 0.040 0.225 202.7 RGB
NGC 362-003 15.70814 -70.83189 16.92 0.79 -0.720 0.071 2.193 0.044 0.154 221.1 RGB
NGC 362-004 15.69642 -70.87922 17.03 0.78 -0.525 0.072 2.153 0.046 0.350 206.1 RGB
NGC 362-005 15.73940 -70.84594 17.18 0.80 0.115 0.087 2.081 0.049 0.990 199.7 RGB
... ... ... ... ... ... ... ... ... ... ... ...
NGC 5286-001 206.54955 -51.42272 16.77 1.08 -0.051 0.099 2.047 0.057 0.741 90.0 RGB
NGC 5286-002 206.54435 -51.40362 16.91 1.07 0.002 0.104 2.183 0.059 0.796 84.1 RGB
NGC 5286-003 206.53143 -51.40539 17.83 0.97 -0.085 0.144 1.884 0.083 0.724 88.7 RGB
NGC 5286-004 206.56119 -51.42629 17.96 1.03 -0.549 0.150 2.049 0.096 0.262 86.2 RGB
NGC 5286-005 206.56752 -51.42112 18.05 0.96 -0.810 0.152 2.141 0.096 0.002 73.4 RGB
... ... ... ... ... ... ... ... ... ... ... ...
M 22-001 279.02891 -23.91745 15.28 0.79 -0.187 0.066 2.316 0.035 0.483 -125.7 RGB
M 22-002 279.04091 -23.91550 16.20 0.80 0.096 0.100 1.984 0.052 0.802 -147.9 RGB
M 22-003 279.05050 -23.92792 16.32 0.77 -0.459 0.100 1.908 0.054 0.252 -141.3 RGB
M 22-004 279.05276 -23.92067 16.33 0.79 -0.589 0.099 1.961 0.056 0.122 -132.7 RGB
M 22-005 279.05760 -23.88352 16.38 0.84 0.199 0.098 1.949 0.051 0.913 -136.2 RGB
... ... ... ... ... ... ... ... ... ... ... ...
Ter7-001 289.40929 -34.65456 16.82 1.22 0.350 0.129 2.425 0.054 0.396 125.9 RGB
Ter7-002 289.43408 -34.67519 16.95 1.19 0.050 0.128 2.366 0.057 0.128 139.2 RGB
Ter7-003 289.44845 -34.65597 17.42 1.08 0.179 0.152 2.412 0.069 0.371 138.5 RGB
Ter7-004 289.44580 -34.64778 17.51 1.10 0.147 0.145 2.399 0.070 0.361 147.0 RGB
Ter7-005 289.41804 -34.68052 17.53 0.98 -0.265 0.119 2.304 0.065 -0.046 138.1 RGB
... ... ... ... ... ... ... ... ... ... ... ...
M 15-001 322.52784 12.19498 17.17 0.72 -0.459 0.093 1.695 0.057 0.278 -128.5 RGB
M 15-002 322.56545 12.21040 17.51 0.71 -0.553 0.105 1.659 0.066 0.188 -128.7 RGB
M 15-003 322.53617 12.13113 17.52 0.67 -0.598 0.097 1.751 0.064 0.143 -98.6 RGB
M 15-004 322.53279 12.18582 17.55 0.71 -0.718 0.111 1.740 0.070 0.023 -111.0 RGB
M 15-005 322.54196 12.15207 17.61 0.67 -0.670 0.113 1.729 0.072 0.072 -107.7 RGB
... ... ... ... ... ... ... ... ... ... ... ...
Pal12-001 326.66154 -21.24816 16.21 0.90 -0.197 0.100 2.273 0.052 0.227 -5.7 RGB
Pal12-002 326.66939 -21.23127 16.61 0.88 0.151 0.105 2.509 0.057 0.627 8.5 RGB
Pal12-003 326.65155 -21.24316 16.88 0.79 -0.578 0.108 2.208 0.062 -0.068 14.0 RGB
Pal12-004 326.67071 -21.25261 16.92 0.75 -0.442 0.094 2.121 0.056 0.073 18.5 RGB
Pal12-005 326.67863 -21.26354 16.97 0.74 -0.567 0.095 2.068 0.058 -0.045 17.5 RGB
... ... ... ... ... ... ... ... ... ... ... ...


References

 

  
B Online Material


 

 
Table A.1: List of spectroscopic sample stars, ordered by increasing V magnitude.
Id $\alpha$(2000) $\delta $(2000) V B-V CN dCN CH dCH ${\rm\delta CN}$ $v_{\rm rad}$ Type
NGC 288-001 13.23449 -26.53142 16.83 0.76 -0.493 0.105 2.291 0.056 0.303 -90.9 RGB
NGC 288-002 13.22360 -26.59697 16.97 0.78 -0.546 0.094 2.288 0.052 0.252 -91.1 RGB
NGC 288-003 13.20552 -26.63372 17.14 0.76 -0.482 0.082 2.355 0.049 0.319 -83.4 RGB
NGC 288-004 13.22098 -26.54228 17.37 0.71 0.265 0.130 2.125 0.063 1.070 -89.1 RGB
NGC 288-005 13.22482 -26.60748 17.52 0.73 -0.004 0.120 2.124 0.063 0.803 -94.3 RGB
NGC 288-006 13.23787 -26.52769 17.57 0.70 -0.034 0.128 2.158 0.066 0.774 -94.7 RGB
NGC 288-007 13.23132 -26.57133 17.62 0.72 0.121 0.110 2.176 0.060 0.930 -79.7 RGB
NGC 288-008 13.24678 -26.52963 17.71 0.69 -0.034 0.137 2.133 0.071 0.776 -91.9 RGB
NGC 288-009 13.22385 -26.56176 17.76 0.72 -0.707 0.159 2.251 0.085 0.105 -90.1 RGB
NGC 288-010 13.23367 -26.62778 17.77 0.72 -0.812 0.115 2.225 0.067 0.000 -104.1 RGB
NGC 288-011 13.23598 -26.59420 17.78 0.69 -0.731 0.125 2.237 0.071 0.081 -92.5 RGB
NGC 288-012 13.23494 -26.57646 17.82 0.72 -0.560 0.136 2.238 0.075 0.253 -88.3 RGB
NGC 288-013 13.23544 -26.54812 17.94 0.69 -0.083 0.142 2.157 0.076 0.732 -84.5 RGB
NGC 288-014 13.22266 -26.61854 18.00 0.71 -0.628 0.155 2.245 0.086 0.188 -100.1 RGB
NGC 288-015 13.23266 -26.58919 18.09 0.68 -0.028 0.144 2.064 0.078 0.789 -84.7 RGB
NGC 288-016 13.21534 -26.56422 18.24 0.66 -0.547 0.158 2.165 0.087 0.273 -88.0 RGB
NGC 288-017 13.25406 -26.61293 18.27 0.59 -0.492 0.162 1.964 0.087 0.328 -95.9 SGB
NGC 288-018 13.23324 -26.53597 18.31 0.62 -0.610 0.169 2.078 0.095 0.211 -92.4 SGB
NGC 288-019 13.24789 -26.60889 18.32 0.59 -0.623 0.146 1.970 0.084 0.198 -88.6 SGB
NGC 288-020 13.23613 -26.59022 18.33 0.61 -0.840 0.139 2.025 0.081 -0.019 -92.1 SGB
NGC 288-021 13.22914 -26.53786 18.36 0.59 -0.197 0.174 2.158 0.094 0.625 -86.8 SGB
NGC 288-022 13.23485 -26.58387 18.38 0.58 -0.585 0.149 1.842 0.083 0.237 -85.4 SGB
NGC 288-023 13.23269 -26.62510 18.39 0.52 -0.584 0.143 1.824 0.081 0.238 -89.8 SGB
NGC 288-024 13.23434 -26.58061 18.40 0.57 -0.588 0.152 1.994 0.088 0.234 -87.6 SGB
NGC 288-025 13.20622 -26.63090 18.41 0.54 -0.605 0.115 1.853 0.072 0.217 -82.6 SGB
NGC 288-026 13.23036 -26.54462 18.42 0.52 -0.636 0.155 1.942 0.087 0.187 -84.9 SGB
NGC 288-027 13.23675 -26.53481 18.42 0.47 -0.476 0.136 1.815 0.080 0.346 -74.4 SGB
NGC 288-028 13.24216 -26.62313 18.45 0.48 -0.704 0.151 1.776 0.086 0.119 -95.7 SGB
NGC 288-029 13.22620 -26.53989 18.46 0.52 -0.773 0.153 1.932 0.087 0.050 -81.6 SGB
NGC 288-030 13.24081 -26.57897 18.46 0.53 -0.731 0.164 1.889 0.093 0.092 -85.4 SGB
NGC 288-031 13.22603 -26.58213 18.47 0.53 -0.658 0.167 1.879 0.092 0.165 -84.0 SGB
NGC 288-032 13.23301 -26.61150 18.47 0.49 -0.604 0.156 1.764 0.088 0.219 -90.6 SGB
NGC 288-033 13.20604 -26.54595 18.48 0.49 -0.695 0.143 1.899 0.084 0.128 -82.1 SGB
NGC 288-034 13.22852 -26.61737 18.48 0.49 -0.466 0.152 1.744 0.087 0.358 -96.6 SGB
NGC 288-035 13.23424 -26.63550 18.49 0.50 -0.720 0.139 1.758 0.083 0.104 -99.5 SGB
NGC 288-036 13.23346 -26.56777 18.50 0.50 -0.409 0.148 1.837 0.086 0.415 -82.0 SGB
NGC 288-037 13.24172 -26.56576 18.51 0.51 -0.626 0.162 1.883 0.090 0.198 -80.9 SGB
NGC 288-038 13.20516 -26.55748 18.54 0.49 -0.684 0.147 1.859 0.085 0.141 -80.0 SGB
NGC 288-039 13.23552 -26.61578 18.54 0.47 -0.535 0.140 1.720 0.081 0.290 -86.8 SGB
NGC 288-040 13.23028 -26.52377 18.55 0.48 -0.571 0.146 1.786 0.086 0.253 -85.0 SGB
NGC 288-041 13.21876 -26.55923 18.55 0.49 -0.506 0.144 1.741 0.082 0.319 -75.0 SGB
NGC 288-042 13.20784 -26.55264 18.60 0.47 -0.666 0.135 1.742 0.080 0.159 -73.1 SGB
NGC 288-043 13.23634 -26.53191 18.71 0.46 -0.595 0.134 1.749 0.083 0.232 -68.2 MS
NGC 288-044 13.24177 -26.58093 18.82 0.43 -0.591 0.140 1.774 0.089 0.238 -66.3 MS
NGC 288-045 13.23973 -26.53821 18.83 0.44 -0.592 0.141 1.722 0.088 0.238 -66.3 MS
NGC 288-046 13.23891 -26.52848 18.89 0.44 -0.613 0.147 1.697 0.092 0.217 -70.5 MS
NGC 288-047 13.24374 -26.59485 18.89 0.47 -0.562 0.139 1.705 0.090 0.268 -66.3 MS
NGC 288-048 13.22868 -26.55067 18.90 0.43 -0.617 0.143 1.708 0.089 0.214 -71.3 MS
NGC 288-049 13.22868 -26.55067 18.90 0.43 -0.617 0.143 1.708 0.089 0.214 -71.3 MS
NGC 288-050 13.24387 -26.60358 18.93 0.45 -0.545 0.142 1.629 0.090 0.286 -65.5 MS
NGC 288-051 13.24115 -26.59677 18.96 0.43 -0.481 0.138 1.648 0.090 0.350 -69.8 MS
NGC 288-052 13.25602 -26.60595 18.96 0.46 -0.619 0.147 1.739 0.096 0.213 -73.6 MS
NGC 288-053 13.24202 -26.58934 18.98 0.45 -0.614 0.140 1.671 0.093 0.218 -57.9 MS
NGC 288-054 13.22418 -26.53314 19.02 0.45 -0.725 0.151 1.735 0.095 0.108 -62.4 MS
NGC 288-055 13.23348 -26.60758 19.02 0.46 -0.689 0.150 1.704 0.097 0.144 -77.0 MS
NGC 288-056 13.23161 -26.60188 19.07 0.45 -0.739 0.160 1.707 0.102 0.095 -59.7 MS
NGC 288-057 13.25071 -26.61296 19.08 0.43 -0.632 0.162 1.759 0.102 0.202 -76.9 MS
NGC 288-058 13.23847 -26.63385 19.09 0.43 -0.559 0.141 1.648 0.095 0.274 -67.6 MS
NGC 288-059 13.24501 -26.57766 19.10 0.45 -0.656 0.172 1.780 0.106 0.178 -78.9 MS
NGC 288-060 13.24804 -26.62716 19.11 0.43 -0.658 0.148 1.685 0.096 0.176 -64.7 MS
NGC 288-061 13.23127 -26.60001 19.11 0.46 -0.700 0.161 1.716 0.104 0.134 -69.0 MS
NGC 288-062 13.22175 -26.54475 19.13 0.45 -0.718 0.155 1.760 0.099 0.116 -73.4 MS
NGC 288-063 13.22098 -26.52956 19.15 0.44 -0.767 0.159 1.748 0.100 0.068 -69.3 MS
NGC 288-064 13.24339 -26.58277 19.20 0.47 -0.603 0.176 1.735 0.110 0.233 -77.8 MS
NGC 288-065 13.22389 -26.53966 19.20 0.43 -0.818 0.157 1.898 0.102 0.018 -65.4 MS
NGC 288-066 13.23320 -26.56424 19.22 0.44 -0.489 0.179 1.662 0.108 0.347 -70.8 MS
NGC 288-067 13.22107 -26.54135 19.25 0.46 -0.781 0.178 1.706 0.110 0.056 -77.0 MS
NGC 288-068 13.22107 -26.54135 19.25 0.46 -0.781 0.178 1.706 0.110 0.056 -77.0 MS
NGC 288-069 13.24484 -26.57078 19.28 0.47 -0.726 0.188 1.756 0.116 0.111 -73.8 MS
NGC 288-070 13.24921 -26.61144 19.36 0.43 -0.514 0.181 1.679 0.113 0.325 -66.8 MS
NGC 288-071 13.22695 -26.54334 19.39 0.46 -0.589 0.176 1.725 0.111 0.250 -72.6 MS
NGC 288-072 13.24306 -26.55599 19.39 0.49 -0.708 0.179 1.801 0.116 0.131 -73.1 MS
NGC 288-073 13.24092 -26.63545 19.41 0.46 -0.529 0.173 1.679 0.114 0.310 -70.8 MS
NGC 288-074 13.22211 -26.54883 19.50 0.47 -0.621 0.193 1.796 0.121 0.219 -74.4 MS
NGC 288-075 13.24784 -26.59811 19.50 0.42 -0.478 0.207 1.638 0.132 0.362 -64.4 MS
NGC 288-076 13.23084 -26.52602 19.54 0.47 -0.634 0.195 1.660 0.123 0.208 -76.0 MS
NGC 288-077 13.23209 -26.56299 19.60 0.49 -0.575 0.208 1.706 0.129 0.268 -71.5 MS
NGC 288-078 13.23842 -26.53609 19.62 0.47 -0.566 0.223 1.714 0.134 0.277 -78.8 MS
NGC 288-079 13.25103 -26.63716 19.63 0.45 0.345 0.200 1.712 0.125 1.188 -81.5 MS
NGC 288-080 13.24588 -26.62907 19.64 0.46 -0.484 0.197 1.684 0.124 0.359 -64.9 MS
NGC 288-081 13.23252 -26.59295 19.65 0.51 -0.900 0.205 1.768 0.131 -0.057 -72.9 MS
NGC 288-082 13.24570 -26.57643 19.67 0.50 -0.664 0.219 1.744 0.136 0.179 -62.5 MS
NGC 288-083 13.24579 -26.62047 19.68 0.47 -0.539 0.199 1.653 0.128 0.305 -72.5 MS
NGC 288-084 13.23610 -26.61677 19.68 0.48 -0.756 0.209 1.682 0.133 0.087 -72.9 MS
NGC 288-085 13.24088 -26.55429 19.69 0.50 -0.719 0.211 1.774 0.135 0.125 -68.4 MS
NGC 288-086 13.23434 -26.56785 19.70 0.50 -0.623 0.214 1.801 0.135 0.221 -68.1 MS
NGC 288-087 13.23430 -26.57322 19.72 0.59 -0.700 0.228 1.911 0.144 0.144 -61.6 MS
NGC 288-088 13.22683 -26.55220 19.74 0.49 -0.809 0.236 1.884 0.152 0.036 -61.8 MS
NGC 288-089 13.23172 -26.56124 19.74 0.48 -0.319 0.240 1.753 0.145 0.526 -75.8 MS
NGC 288-090 13.25343 -26.61468 19.77 0.47 -0.609 0.229 1.889 0.150 0.236 -90.5 MS
NGC 288-091 13.24805 -26.62451 19.83 0.49 -0.641 0.250 1.678 0.150 0.205 -67.3 MS
NGC 288-092 13.23631 -26.52126 19.95 0.52 -0.551 0.268 1.847 0.171 0.298 -78.1 MS
NGC 288-093 13.24568 -26.61894 19.97 0.49 -0.570 0.236 1.796 0.153 0.278 -79.9 MS
NGC 288-094 13.24649 -26.62229 19.98 0.50 -0.515 0.263 1.841 0.166 0.334 -73.6 MS
NGC 288-095 13.23555 -26.55945 19.99 0.56 -0.755 0.262 1.898 0.164 0.094 -59.4 MS
NGC 288-096 13.25435 -26.56649 20.13 0.54 -0.560 0.279 1.852 0.175 0.291 -72.1 MS
NGC 288-097 13.24945 -26.59090 20.14 0.49 -0.664 0.243 1.848 0.162 0.187 -66.2 MS
NGC 288-098 13.24945 -26.59090 20.19 0.52 -0.523 0.244 1.906 0.159 0.329 -63.1 MS
NGC 288-099 13.24487 -26.53475 20.19 0.50 -0.726 0.318 1.793 0.187 0.126 -74.1 MS
                       
NGC 362-001 15.70094 -70.86414 16.73 0.81 -0.051 0.066 2.115 0.039 0.822 219.7 RGB
NGC 362-002 15.62026 -70.90492 16.74 0.80 -0.648 0.064 2.243 0.040 0.225 202.7 RGB
NGC 362-003 15.70814 -70.83189 16.92 0.79 -0.720 0.071 2.193 0.044 0.154 221.1 RGB
NGC 362-004 15.69642 -70.87922 17.03 0.78 -0.525 0.072 2.153 0.046 0.350 206.1 RGB
NGC 362-005 15.73940 -70.84594 17.18 0.80 0.115 0.087 2.081 0.049 0.990 199.7 RGB
NGC 362-006 15.65438 -70.87340 17.40 0.73 -0.009 0.087 2.058 0.051 0.868 208.8 RGB
NGC 362-007 15.68017 -70.83588 17.50 0.75 -0.774 0.090 2.206 0.057 0.104 229.3 RGB
NGC 362-008 15.64375 -70.87226 17.54 0.74 -0.673 0.089 2.218 0.056 0.205 220.5 RGB
NGC 362-009 15.68763 -70.81459 17.59 0.74 -0.075 0.097 2.109 0.057 0.803 217.2 RGB
NGC 362-010 15.64325 -70.84042 17.64 0.73 -0.243 0.098 2.070 0.059 0.636 219.1 RGB
NGC 362-011 15.69340 -70.86878 17.76 0.75 -0.727 0.094 2.209 0.064 0.153 203.4 RGB
NGC 362-012 15.66295 -70.82199 17.88 0.71 -0.150 0.107 1.985 0.063 0.731 219.6 RGB
NGC 362-013 15.65115 -70.89311 17.91 0.70 -0.235 0.107 2.048 0.065 0.646 202.6 RGB
NGC 362-014 15.62802 -70.82859 18.10 0.70 -0.780 0.116 2.130 0.073 0.102 215.7 RGB
NGC 362-015 15.72177 -70.85894 18.15 0.68 -0.813 0.115 2.100 0.075 0.070 216.1 RGB
NGC 362-016 15.61183 -70.89585 18.19 0.67 -0.254 0.119 2.085 0.072 0.629 213.2 RGB
NGC 362-017 15.69619 -70.83124 18.19 0.67 -0.314 0.124 1.985 0.075 0.569 226.5 RGB
NGC 362-018 15.71288 -70.81831 18.25 0.66 -0.258 0.118 1.943 0.073 0.626 211.9 RGB
NGC 362-019 15.71934 -70.83878 18.26 0.65 -0.187 0.124 1.897 0.075 0.697 207.4 RGB
NGC 362-020 15.72946 -70.88968 18.27 0.66 -0.763 0.114 2.021 0.075 0.121 208.2 RGB
NGC 362-021 15.71244 -70.86155 18.30 0.60 -0.642 0.106 1.849 0.070 0.242 219.7 SGB
NGC 362-022 15.68541 -70.86013 18.30 0.61 -0.791 0.110 2.003 0.074 0.093 215.6 SGB
NGC 362-023 15.61372 -70.88400 18.31 0.58 -0.851 0.111 2.026 0.073 0.033 218.4 SGB
NGC 362-024 15.66226 -70.79932 18.32 0.53 -0.723 0.108 1.773 0.071 0.161 235.4 SGB
NGC 362-025 15.61367 -70.81248 18.33 0.57 -0.369 0.110 1.817 0.070 0.515 224.2 SGB
NGC 362-026 15.69106 -70.88836 18.34 0.52 -0.756 0.109 1.793 0.073 0.128 208.3 SGB
NGC 362-027 15.65406 -70.82763 18.34 0.55 -0.751 0.112 1.875 0.072 0.133 219.3 SGB
NGC 362-028 15.64568 -70.80231 18.35 0.54 -0.829 0.110 1.887 0.072 0.056 217.7 SGB
NGC 362-029 15.60575 -70.83384 18.36 0.54 -0.519 0.109 1.799 0.069 0.366 225.4 SGB
NGC 362-030 15.68082 -70.82403 18.37 0.54 -0.637 0.111 1.704 0.071 0.247 218.2 SGB
NGC 362-031 15.64068 -70.89159 18.37 0.51 -0.558 0.107 1.773 0.070 0.326 212.9 SGB
NGC 362-032 15.73449 -70.81566 18.38 0.53 -0.768 0.113 1.762 0.074 0.117 215.3 SGB
NGC 362-033 15.70773 -70.85012 18.38 0.50 -0.705 0.111 1.796 0.072 0.180 231.0 SGB
NGC 362-034 15.71192 -70.82009 18.39 0.51 -0.555 0.110 1.733 0.073 0.330 204.2 SGB
NGC 362-035 15.63085 -70.88231 18.39 0.48 -0.756 0.115 1.739 0.075 0.129 210.1 SGB
NGC 362-036 15.59876 -70.80515 18.40 0.52 -0.669 0.108 1.742 0.071 0.216 230.2 SGB
NGC 362-037 15.69928 -70.84210 18.40 0.60 -0.592 0.112 1.871 0.073 0.292 227.2 SGB
NGC 362-038 15.62638 -70.84452 18.40 0.51 -0.733 0.116 1.695 0.071 0.152 218.4 SGB
NGC 362-039 15.63059 -70.80403 18.41 0.50 -0.694 0.112 1.762 0.072 0.191 225.9 SGB
NGC 362-040 15.68510 -70.87556 18.41 0.51 -0.608 0.112 1.724 0.074 0.277 207.1 SGB
NGC 362-041 15.68500 -70.86633 18.42 0.51 -0.674 0.106 1.660 0.071 0.211 216.9 SGB
NGC 362-042 15.65406 -70.89685 18.57 0.50 -0.683 0.114 1.813 0.076 0.203 227.4 SGB
NGC 362-043 15.67477 -70.90345 18.89 0.44 -0.940 0.173 1.690 0.114 -0.052 241.3 MS
NGC 362-044 15.63644 -70.84245 18.89 0.42 -0.826 0.213 1.708 0.135 0.062 237.4 MS
NGC 362-045 15.69096 -70.85859 18.90 0.42 -0.698 0.185 1.617 0.121 0.190 245.7 MS
NGC 362-046 15.65185 -70.80303 18.91 0.42 -0.814 0.216 1.750 0.140 0.074 256.5 MS
NGC 362-047 15.65667 -70.84093 18.92 0.47 -0.871 0.194 1.711 0.127 0.017 256.7 MS
NGC 362-048 15.71316 -70.80703 18.92 0.44 -0.616 0.189 1.668 0.123 0.272 266.7 MS
NGC 362-049 15.67617 -70.87918 18.92 0.40 -0.818 0.192 1.697 0.126 0.070 244.5 MS
NGC 362-050 15.66321 -70.85285 18.94 0.47 -0.524 0.209 1.716 0.129 0.365 262.5 MS
NGC 362-051 15.69220 -70.83378 18.97 0.38 -0.627 0.199 1.712 0.128 0.262 257.3 MS
NGC 362-052 15.67105 -70.81799 18.98 0.42 -0.639 0.194 1.684 0.126 0.250 254.5 MS
NGC 362-053 15.65119 -70.86436 19.01 0.42 -0.446 0.185 1.675 0.116 0.443 262.9 MS
NGC 362-054 15.69001 -70.82183 19.06 0.44 -0.737 0.237 1.688 0.154 0.153 267.7 MS
NGC 362-055 15.69821 -70.82019 19.09 0.45 -0.695 0.200 1.651 0.130 0.195 265.2 MS
NGC 362-056 15.68329 -70.83914 19.09 0.46 -0.936 0.223 1.697 0.142 -0.046 241.6 MS
NGC 362-057 15.64778 -70.88107 19.10 0.41 -0.534 0.199 1.704 0.132 0.356 230.3 MS
NGC 362-058 15.71673 -70.80912 19.13 0.46 -0.556 0.199 1.727 0.133 0.334 262.6 MS
NGC 362-059 15.68672 -70.86018 19.15 0.40 -0.690 0.171 1.736 0.113 0.200 258.5 MS
NGC 362-060 15.63856 -70.84953 19.20 0.44 -0.684 0.226 1.639 0.142 0.207 266.8 MS
NGC 362-061 15.70660 -70.84726 19.22 0.49 -0.677 0.256 1.828 0.161 0.214 255.5 MS
NGC 362-062 15.67827 -70.82522 19.22 0.45 -0.650 0.216 1.573 0.137 0.241 239.5 MS
NGC 362-063 15.61550 -70.87506 19.23 0.42 -0.576 0.226 1.731 0.143 0.315 234.0 MS
NGC 362-064 15.67394 -70.89766 19.25 0.44 -0.706 0.209 1.701 0.139 0.185 236.6 MS
NGC 362-065 15.67702 -70.88194 19.26 0.42 -0.661 0.235 1.693 0.151 0.230 256.5 MS
NGC 362-066 15.66786 -70.80237 19.26 0.46 -0.697 0.228 1.658 0.147 0.194 262.3 MS
NGC 362-067 15.68542 -70.87747 19.33 0.45 -0.792 0.279 1.804 0.174 0.099 229.7 MS
NGC 362-068 15.70748 -70.82939 19.34 0.43 -0.650 0.223 1.668 0.146 0.242 257.1 MS
NGC 362-069 15.64197 -70.88671 19.37 0.41 -0.642 0.228 1.810 0.153 0.250 239.1 MS
NGC 362-070 15.66107 -70.89398 19.37 0.47 -0.654 0.215 1.696 0.140 0.238 241.7 MS
NGC 362-071 15.71891 -70.81242 19.43 0.46 -0.735 0.280 1.656 0.183 0.157 260.8 MS
NGC 362-072 15.62668 -70.88534 19.44 0.42 -0.789 0.235 1.735 0.155 0.103 225.4 MS
NGC 362-073 15.64042 -70.85121 19.44 0.47 -0.687 0.257 1.888 0.167 0.205 258.1 MS
NGC 362-074 15.62644 -70.89608 19.52 0.45 -0.800 0.276 1.706 0.172 0.093 233.7 MS
NGC 362-075 15.67252 -70.79427 19.57 0.46 -0.689 0.270 1.618 0.181 0.204 266.7 MS
NGC 362-076 15.68330 -70.81533 19.62 0.47 -0.663 0.274 1.806 0.186 0.231 261.0 MS
NGC 362-077 15.65887 -70.89216 19.84 0.49 -0.712 0.297 1.671 0.185 0.183 213.9 MS
                       
NGC 5286-001 206.54955 -51.42272 16.77 1.08 -0.051 0.099 2.047 0.057 0.741 90.0 RGB
NGC 5286-002 206.54435 -51.40362 16.91 1.07 0.002 0.104 2.183 0.059 0.796 84.1 RGB
NGC 5286-003 206.53143 -51.40539 17.83 0.97 -0.085 0.144 1.884 0.083 0.724 88.7 RGB
NGC 5286-004 206.56119 -51.42629 17.96 1.03 -0.549 0.150 2.049 0.096 0.262 86.2 RGB
NGC 5286-005 206.56752 -51.42112 18.05 0.96 -0.810 0.152 2.141 0.096 0.002 73.4 RGB
NGC 5286-006 206.53137 -51.39231 18.35 0.94 -0.223 0.172 1.830 0.102 0.594 80.4 RGB
NGC 5286-007 206.54788 -51.36254 19.01 0.86 -0.953 0.216 2.071 0.139 -0.126 102.1 SGB
NGC 5286-008 206.53696 -51.33876 19.03 0.83 -0.612 0.209 1.854 0.133 0.216 105.6 SGB
NGC 5286-009 206.55163 -51.39615 19.71 0.68 -0.802 0.216 1.598 0.141 0.036 86.4 SGB
NGC 5286-010 206.53925 -51.34506 19.74 0.79 -0.395 0.298 1.952 0.190 0.444 99.5 SGB
                       
M 22-001 279.02891 -23.91745 15.28 0.79 -0.187 0.066 2.316 0.035 0.483 -125.7 RGB
M 22-002 279.04091 -23.91550 16.20 0.80 0.096 0.100 1.984 0.052 0.802 -147.9 RGB
M 22-003 279.05050 -23.92792 16.32 0.77 -0.459 0.100 1.908 0.054 0.252 -141.3 RGB
M 22-004 279.05276 -23.92067 16.33 0.79 -0.589 0.099 1.961 0.056 0.122 -132.7 RGB
M 22-005 279.05760 -23.88352 16.38 0.84 0.199 0.098 1.949 0.051 0.913 -136.2 RGB
M 22-006 279.04857 -23.87365 16.38 0.83 -0.536 0.100 1.888 0.055 0.177 -125.1 RGB
M 22-007 279.03108 -23.90537 16.46 0.78 -0.509 0.096 1.953 0.053 0.208 -137.8 RGB
M 22-008 279.05745 -23.87208 16.49 0.79 -0.341 0.114 1.803 0.059 0.377 -136.6 RGB
M 22-009 279.03129 -23.94113 16.58 0.76 -0.636 0.105 1.823 0.058 0.085 -133.7 RGB
M 22-010 279.03517 -23.85592 16.64 0.80 -0.780 0.095 1.947 0.054 -0.056 -118.1 RGB
M 22-011 279.06252 -23.89160 16.67 0.81 -0.119 0.122 1.724 0.063 0.606 -127.0 RGB
M 22-012 279.06206 -23.84654 16.68 0.81 -0.263 0.133 1.838 0.068 0.463 -140.9 RGB
M 22-013 279.05838 -23.85886 16.68 0.80 -0.518 0.111 1.758 0.061 0.207 -127.3 RGB
M 22-014 279.04689 -23.86696 16.71 0.83 -0.083 0.136 2.046 0.070 0.644 -133.4 RGB
M 22-015 279.04205 -23.91396 16.71 0.70 -0.377 0.104 1.692 0.057 0.349 -129.8 SGB
M 22-016 279.06023 -23.90403 16.76 0.72 -0.548 0.104 1.789 0.059 0.181 -121.9 SGB
M 22-017 279.03037 -23.90847 16.79 0.80 -0.663 0.095 1.697 0.056 0.067 -107.0 RGB
M 22-018 279.02381 -23.88081 16.82 0.74 -0.496 0.106 1.735 0.059 0.234 -133.3 SGB
M 22-019 279.04432 -23.89746 16.82 0.69 -0.464 0.101 1.721 0.057 0.267 -118.9 SGB
M 22-020 279.03952 -23.85198 16.82 0.77 -0.631 0.113 1.855 0.062 0.100 -124.2 RGB
M 22-021 279.05528 -23.89469 16.86 0.71 -0.684 0.095 1.715 0.056 0.048 -137.8 SGB
M 22-022 279.04354 -23.92439 16.89 0.70 -0.549 0.106 1.850 0.061 0.185 -135.0 SGB
M 22-023 279.04756 -23.89345 16.93 0.76 -0.191 0.148 2.017 0.078 0.545 -130.1 SGB
M 22-024 279.04237 -23.95182 16.93 0.67 -0.530 0.101 1.807 0.058 0.206 -129.8 SGB
M 22-025 279.04546 -23.94727 16.96 0.73 -0.195 0.112 1.947 0.062 0.541 -133.8 SGB
M 22-026 279.06095 -23.85099 16.96 0.71 -0.453 0.140 1.644 0.074 0.283 -124.5 SGB
M 22-027 279.06098 -23.89917 16.97 0.68 -0.491 0.104 1.662 0.060 0.246 -102.2 SGB
M 22-028 279.04295 -23.89064 16.97 0.74 -0.267 0.126 1.799 0.068 0.470 -135.2 SGB
M 22-029 279.03779 -23.88544 16.99 0.66 -0.461 0.114 1.747 0.065 0.277 -134.6 SGB
M 22-030 279.05715 -23.86118 17.01 0.63 -0.615 0.115 1.735 0.066 0.123 -110.5 SGB
M 22-031 279.05047 -23.85347 17.03 0.68 -0.560 0.118 1.695 0.066 0.179 -116.0 SGB
M 22-032 279.06222 -23.87841 17.05 0.75 -0.395 0.141 1.641 0.073 0.345 -135.0 SGB
M 22-033 279.03841 -23.87661 17.06 0.64 -0.637 0.115 1.698 0.064 0.103 -110.5 SGB
M 22-034 279.04397 -23.95963 17.10 0.61 -0.667 0.099 1.619 0.060 0.075 -129.7 SGB
M 22-035 279.05138 -23.90741 17.10 0.63 -0.630 0.109 1.648 0.062 0.112 -114.0 SGB
M 22-036 279.04397 -23.95963 17.10 0.61 -0.667 0.099 1.619 0.060 0.075 -129.7 SGB
M 22-037 279.03706 -23.90174 17.11 0.64 -0.752 0.128 1.559 0.072 -0.010 -128.6 SGB
M 22-038 279.05045 -23.95082 17.11 0.61 -0.570 0.100 1.703 0.060 0.172 -132.8 SGB
M 22-039 279.03991 -23.94901 17.11 0.66 -0.512 0.111 1.698 0.063 0.230 -136.4 SGB
M 22-040 279.05344 -23.96111 17.12 0.65 -0.313 0.119 1.710 0.065 0.430 -141.9 SGB
M 22-041 279.04552 -23.93060 17.12 0.61 -0.597 0.139 1.683 0.075 0.146 -122.6 SGB
M 22-042 279.03936 -23.92582 17.17 0.59 -0.480 0.129 1.692 0.073 0.265 -135.3 SGB
M 22-043 279.04863 -23.86465 17.20 0.64 -0.328 0.124 1.669 0.068 0.418 -113.5 SGB
M 22-044 279.05992 -23.84805 17.21 0.66 -0.535 0.138 1.667 0.077 0.211 -114.6 SGB
M 22-045 279.05043 -23.88240 17.21 0.66 -0.473 0.145 1.724 0.077 0.273 -135.5 SGB
M 22-046 279.04350 -23.91890 17.22 0.63 -0.778 0.137 1.771 0.077 -0.031 -139.5 SGB
M 22-047 279.06073 -23.87510 17.23 0.63 -0.495 0.125 1.555 0.071 0.252 -130.1 SGB
M 22-048 279.04008 -23.93242 17.24 0.64 -0.554 0.128 1.726 0.071 0.193 -129.7 SGB
M 22-049 279.05270 -23.86817 17.25 0.65 -0.581 0.119 1.673 0.067 0.167 -112.3 SGB
M 22-050 279.03700 -23.87038 17.27 0.68 -0.535 0.141 1.739 0.077 0.213 -116.7 SGB
M 22-051 279.05241 -23.90052 17.28 0.63 -0.485 0.129 1.738 0.073 0.264 -119.2 SGB
M 22-052 279.04862 -23.93754 17.29 0.59 -0.664 0.132 1.665 0.072 0.085 -136.6 SGB
M 22-053 279.04353 -23.86241 17.34 0.64 -0.476 0.138 1.734 0.077 0.275 -123.3 SGB
M 22-054 279.05475 -23.88720 17.39 0.56 -0.547 0.126 1.635 0.071 0.207 -112.6 SGB
M 22-055 279.05890 -23.87640 17.51 0.65 -0.477 0.126 1.599 0.077 0.281 -96.9 MS
M 22-056 279.04447 -23.92742 17.55 0.63 -0.695 0.126 1.631 0.077 0.065 -125.2 MS
M 22-057 279.06106 -23.85731 17.57 0.60 -0.430 0.125 1.601 0.079 0.330 -96.7 MS
M 22-058 279.03079 -23.92864 17.57 0.58 -0.635 0.125 1.640 0.077 0.125 -142.6 MS
M 22-059 279.03416 -23.93864 17.62 0.60 -0.680 0.137 1.608 0.084 0.082 -115.7 MS
M 22-060 279.03410 -23.88717 17.63 0.62 -0.875 0.118 1.602 0.072 -0.112 -90.5 MS
M 22-061 279.02809 -23.92253 17.63 0.58 -0.653 0.143 1.759 0.087 0.110 -132.6 MS
M 22-062 279.04247 -23.91618 17.64 0.57 -0.566 0.119 1.587 0.071 0.197 -121.9 MS
M 22-063 279.04189 -23.96029 17.65 0.62 -0.605 0.117 1.708 0.074 0.159 -123.7 MS
M 22-064 279.02423 -23.90893 17.69 0.61 -0.507 0.134 1.628 0.081 0.258 -112.8 MS
M 22-065 279.03155 -23.93055 17.71 0.56 -0.653 0.141 1.662 0.088 0.113 -124.5 MS
M 22-066 279.05005 -23.90834 17.86 0.60 -0.659 0.128 1.343 0.080 0.113 -94.6 MS
M 22-067 279.04560 -23.86954 17.87 0.69 -0.614 0.149 1.660 0.087 0.159 -111.2 MS
M 22-068 279.04857 -23.92098 17.89 0.64 -0.623 0.147 1.729 0.088 0.150 -98.8 MS
M 22-069 279.03686 -23.89126 17.90 0.54 -0.843 0.127 1.603 0.080 -0.069 -105.5 MS
M 22-070 279.05969 -23.86506 17.91 0.65 -0.627 0.168 1.564 0.100 0.147 -97.7 MS
M 22-071 279.04780 -23.90671 17.91 0.68 -0.759 0.153 1.646 0.094 0.015 -125.5 MS
M 22-072 279.03362 -23.93664 17.96 0.60 -0.555 0.144 1.675 0.087 0.221 -117.7 MS
M 22-073 279.03367 -23.93484 17.98 0.57 -0.498 0.144 1.596 0.091 0.279 -113.1 MS
M 22-074 279.03709 -23.94155 17.98 0.66 -0.530 0.076 1.680 0.049 0.247 -102.7 MS
M 22-075 279.05259 -23.93333 18.01 0.62 -0.448 0.136 1.662 0.083 0.330 -124.0 MS
M 22-076 279.04092 -23.87893 18.04 0.69 -0.706 0.166 1.823 0.105 0.073 -113.7 MS
M 22-077 279.04153 -23.88500 18.05 0.65 -0.424 0.155 1.716 0.091 0.355 -111.9 MS
M 22-078 279.05215 -23.89776 18.05 0.67 -0.736 0.196 1.635 0.119 0.043 -124.2 MS
M 22-079 279.03621 -23.92610 18.06 0.56 -0.627 0.162 1.603 0.101 0.153 -111.6 MS
M 22-080 279.05975 -23.88213 18.06 0.70 -0.528 0.143 1.589 0.091 0.252 -102.4 MS
M 22-081 279.04965 -23.90096 18.20 0.65 -0.855 0.176 1.561 0.110 -0.069 -106.3 MS
M 22-082 279.05433 -23.86839 18.22 0.66 -0.603 0.203 1.450 0.116 0.184 -128.3 MS
M 22-083 279.05075 -23.85956 18.23 0.67 -0.530 0.199 1.628 0.119 0.257 -110.3 MS
M 22-084 279.05851 -23.86318 18.25 0.67 -0.676 0.211 1.493 0.129 0.111 -143.0 MS
M 22-085 279.05880 -23.86156 18.26 0.69 -0.387 0.176 1.554 0.109 0.401 -102.5 MS
M 22-086 279.06292 -23.87166 18.37 0.66 -0.439 0.187 1.710 0.110 0.353 -104.8 MS
M 22-087 279.04513 -23.89536 18.40 0.69 -0.364 0.201 1.576 0.121 0.429 -111.9 MS
M 22-088 279.03918 -23.95704 18.40 0.66 -0.445 0.176 1.828 0.111 0.349 -122.7 MS
M 22-089 279.03175 -23.91428 18.43 0.61 -0.729 0.192 1.672 0.122 0.065 -136.7 MS
M 22-090 279.02337 -23.89604 18.43 0.68 -0.333 0.206 1.671 0.122 0.461 -130.3 MS
M 22-091 279.05090 -23.93196 18.52 0.66 -0.687 0.216 1.667 0.130 0.111 -115.5 MS
M 22-092 279.05259 -23.85861 18.54 0.73 -0.721 0.171 1.658 0.103 0.078 -106.7 MS
M 22-093 279.04368 -23.95893 18.59 0.62 -0.841 0.187 1.476 0.115 -0.040 -130.2 MS
M 22-094 279.04368 -23.95893 18.59 0.62 -0.841 0.187 1.476 0.115 -0.040 -130.2 MS
M 22-095 279.03898 -23.95518 18.60 0.66 -0.612 0.137 1.809 0.091 0.189 -96.8 MS
M 22-096 279.05470 -23.95105 18.72 0.70 -0.453 0.196 1.802 0.123 0.353 -141.5 MS
M 22-097 279.04649 -23.88956 18.73 0.74 -0.433 0.198 1.739 0.117 0.373 -116.8 MS
                       
Ter7-001 289.40929 -34.65456 16.82 1.22 0.350 0.129 2.425 0.054 0.396 125.9 RGB
Ter7-002 289.43408 -34.67519 16.95 1.19 0.050 0.128 2.366 0.057 0.128 139.2 RGB
Ter7-003 289.44845 -34.65597 17.42 1.08 0.179 0.152 2.412 0.069 0.371 138.5 RGB
Ter7-004 289.44580 -34.64778 17.51 1.10 0.147 0.145 2.399 0.070 0.361 147.0 RGB
Ter7-005 289.41804 -34.68052 17.53 0.98 -0.265 0.119 2.304 0.065 -0.046 138.1 RGB
Ter7-006 289.40815 -34.63017 17.81 0.90 -0.311 0.121 2.279 0.068 -0.025 132.3 HB
Ter7-007 289.41169 -34.66350 17.81 0.88 -0.157 0.126 2.265 0.070 0.130 134.9 HB
Ter7-008 289.45129 -34.67602 17.85 1.07 -0.024 0.163 2.327 0.083 0.274 124.5 RGB
Ter7-009 289.44594 -34.68272 17.88 1.02 0.051 0.159 2.377 0.082 0.356 129.9 RGB
Ter7-010 289.41642 -34.66780 18.05 1.05 -0.198 0.164 2.459 0.087 0.148 130.3 RGB
Ter7-011 289.42025 -34.65818 18.06 1.00 -0.306 0.163 2.391 0.085 0.042 136.7 RGB
Ter7-012 289.45472 -34.60692 18.18 0.99 0.066 0.168 2.366 0.087 0.444 123.0 RGB
Ter7-013 289.43835 -34.69527 18.27 0.95 -0.140 0.191 2.286 0.096 0.261 121.4 RGB
Ter7-014 289.44562 -34.65256 18.30 0.97 -0.119 0.178 2.418 0.095 0.287 133.4 RGB
Ter7-015 289.44512 -34.67927 18.34 1.03 -0.068 0.187 2.301 0.099 0.348 127.9 RGB
Ter7-016 289.42479 -34.66234 18.43 0.89 -0.426 0.170 2.343 0.095 0.011 143.2 RGB
Ter7-017 289.41509 -34.64859 18.71 0.95 -0.275 0.212 2.366 0.111 0.233 139.2 RGB
Ter7-018 289.43972 -34.64429 18.90 0.88 -0.558 0.218 2.357 0.119 -0.005 131.9 RGB
Ter7-019 289.43300 -34.64258 18.93 0.93 -0.135 0.215 2.322 0.120 0.426 147.2 RGB
Ter7-020 289.39695 -34.61736 19.04 0.91 -0.347 0.215 2.437 0.126 0.241 141.3 RGB
Ter7-021 289.41505 -34.66078 19.23 0.88 -0.435 0.250 2.379 0.140 0.199 138.7 RGB
Ter7-022 289.43115 -34.65116 19.34 0.86 -0.263 0.243 2.293 0.142 0.397 146.5 RGB
Ter7-023 289.42779 -34.65015 19.83 0.84 -0.640 0.308 2.296 0.184 0.140 135.2 RGB
Ter7-024 289.40900 -34.69272 20.18 0.80 -0.597 0.345 2.378 0.205 0.268 156.9 SGB
Ter7-025 289.40196 -34.62030 20.24 0.83 -0.714 0.335 2.274 0.211 0.165 160.5 SGB
Ter7-026 289.42344 -34.64369 20.35 0.84 -0.576 0.386 2.215 0.236 0.332 174.4 SGB
Ter7-027 289.42625 -34.63302 20.40 0.76 -0.536 0.345 2.328 0.217 0.383 160.5 SGB
Ter7-028 289.40478 -34.67403 20.42 0.65 -0.413 0.313 2.024 0.202 0.510 178.4 SGB
Ter7-029 289.40421 -34.67166 20.42 0.64 -0.756 0.297 2.055 0.195 0.167 165.4 SGB
Ter7-030 289.43229 -34.64281 20.44 0.69 -0.707 0.371 2.157 0.229 0.223 161.0 SGB
Ter7-031 289.42343 -34.69758 20.45 0.55 -0.699 0.303 1.921 0.201 0.232 161.0 SGB
Ter7-032 289.44575 -34.62801 20.46 0.57 -0.819 0.278 1.806 0.190 0.114 136.5 SGB
Ter7-033 289.40126 -34.63623 20.48 0.73 -0.842 0.347 2.349 0.221 0.098 159.6 SGB
Ter7-034 289.40368 -34.63776 20.49 0.56 -0.786 0.279 1.887 0.192 0.157 159.4 SGB
Ter7-035 289.45130 -34.70464 20.49 0.52 -0.930 0.289 2.106 0.198 0.012 160.2 SGB
Ter7-036 289.41663 -34.62640 20.52 0.56 -0.846 0.284 1.848 0.185 0.102 162.7 SGB
Ter7-037 289.43176 -34.62916 20.52 0.53 -0.816 0.282 1.918 0.189 0.132 179.1 SGB
Ter7-038 289.42994 -34.66954 20.52 0.56 -0.626 0.301 1.875 0.201 0.323 160.7 SGB
Ter7-039 289.43507 -34.68520 20.52 0.53 -0.911 0.288 1.789 0.191 0.037 149.0 SGB
Ter7-040 289.43759 -34.66819 20.53 0.54 -0.834 0.303 1.669 0.194 0.119 151.0 SGB
Ter7-041 289.45039 -34.63995 20.53 0.48 -0.606 0.277 1.748 0.184 0.344 176.0 SGB
Ter7-042 289.43982 -34.67093 20.54 0.55 -0.903 0.293 1.740 0.197 0.051 149.5 SGB
Ter7-043 289.43235 -34.64992 20.55 0.55 -0.944 0.296 1.898 0.197 0.011 177.9 SGB
Ter7-044 289.44499 -34.67294 20.55 0.53 -0.953 0.311 1.747 0.205 0.003 148.0 SGB
Ter7-045 289.42663 -34.65049 20.56 0.57 -0.877 0.327 1.773 0.217 0.081 164.0 SGB
Ter7-046 289.43079 -34.64511 20.57 0.53 -0.607 0.293 1.812 0.199 0.354 175.9 SGB
Ter7-047 289.45466 -34.62447 20.58 0.58 -0.578 0.316 1.879 0.201 0.386 164.1 SGB
                       
M 15-001 322.52784 12.19498 17.17 0.72 -0.459 0.093 1.695 0.057 0.278 -128.5 RGB
M 15-002 322.56545 12.21040 17.51 0.71 -0.553 0.105 1.659 0.066 0.188 -128.7 RGB
M 15-003 322.53617 12.13113 17.52 0.67 -0.598 0.097 1.751 0.064 0.143 -98.6 RGB
M 15-004 322.53279 12.18582 17.55 0.71 -0.718 0.111 1.740 0.070 0.023 -111.0 RGB
M 15-005 322.54196 12.15207 17.61 0.67 -0.670 0.113 1.729 0.072 0.072 -107.7 RGB
M 15-006 322.53398 12.11966 17.72 0.68 -0.658 0.110 1.866 0.072 0.085 -97.5 RGB
M 15-007 322.53916 12.11189 17.81 0.68 -0.669 0.115 1.819 0.075 0.075 -112.6 RGB
M 15-008 322.55596 12.14574 17.82 0.72 0.406 0.135 2.226 0.082 1.150 -113.8 RGB
M 15-009 322.51785 12.20575 17.86 0.68 -0.763 0.119 1.796 0.077 -0.018 -116.4 RGB
M 15-010 322.51622 12.11409 17.88 0.67 -0.637 0.115 1.779 0.075 0.108 -94.8 RGB
M 15-011 322.53050 12.15494 17.91 0.67 -0.667 0.120 1.679 0.077 0.078 -119.5 RGB
M 15-012 322.55420 12.16274 17.96 0.69 -0.530 0.132 1.679 0.084 0.216 -128.7 RGB
M 15-013 322.53932 12.19168 17.97 0.68 -0.689 0.130 1.757 0.083 0.057 -105.5 RGB
M 15-014 322.55938 12.13849 18.08 0.64 -0.680 0.124 1.729 0.082 0.067 -114.4 RGB
M 15-015 322.52163 12.20011 18.14 0.66 -0.288 0.148 1.777 0.093 0.460 -114.9 RGB
M 15-016 322.52709 12.18998 18.18 0.66 -0.732 0.136 1.704 0.086 0.016 -123.2 RGB
M 15-017 322.55024 12.17514 18.24 0.67 -0.571 0.145 1.662 0.093 0.178 -119.2 RGB
M 15-018 322.53782 12.18791 18.26 0.67 -0.697 0.143 1.718 0.091 0.052 -116.4 RGB
M 15-019 322.54437 12.21514 18.33 0.63 -0.484 0.144 1.648 0.093 0.266 -128.0 RGB
M 15-020 322.53777 12.11650 18.40 0.59 -0.600 0.142 1.644 0.093 0.150 -105.4 SGB
M 15-021 322.53631 12.13532 18.46 0.58 -0.463 0.144 1.670 0.095 0.288 -114.3 SGB
M 15-022 322.53770 12.14231 18.51 0.56 -0.473 0.145 1.543 0.095 0.279 -117.4 SGB
M 15-023 322.54808 12.19635 18.52 0.58 -0.587 0.157 1.661 0.101 0.165 -112.1 SGB
M 15-024 322.54320 12.20758 18.53 0.55 -0.487 0.149 1.578 0.099 0.265 -126.0 SGB
M 15-025 322.56614 12.18396 18.54 0.60 -0.518 0.164 1.641 0.105 0.234 -121.7 SGB
M 15-026 322.54833 12.16928 18.54 0.60 -0.659 0.163 1.622 0.106 0.093 -97.2 SGB
M 15-027 322.54058 12.12169 18.55 0.55 -0.646 0.149 1.646 0.097 0.106 -100.9 SGB
M 15-028 322.51466 12.12566 18.56 0.55 -0.673 0.145 1.653 0.096 0.079 -100.8 SGB
M 15-029 322.54464 12.18175 18.59 0.57 -0.692 0.163 1.524 0.104 0.060 -109.1 SGB
M 15-030 322.54177 12.21635 18.60 0.56 -0.584 0.151 1.547 0.099 0.169 -113.3 SGB
M 15-031 322.54845 12.18311 18.63 0.57 -0.671 0.164 1.609 0.103 0.082 -112.8 SGB
M 15-032 322.55170 12.12845 18.64 0.50 -0.560 0.149 1.541 0.098 0.193 -105.3 SGB
M 15-033 322.53302 12.15669 18.66 0.54 -0.543 0.153 1.559 0.101 0.210 -93.1 SGB
M 15-034 322.54343 12.14858 18.67 0.54 -0.717 0.165 1.655 0.107 0.036 -104.5 SGB
M 15-035 322.55392 12.19383 18.69 0.58 -0.692 0.167 1.633 0.110 0.061 -118.2 SGB
M 15-036 322.52440 12.14973 18.70 0.50 -0.776 0.147 1.747 0.093 -0.022 -104.3 SGB
M 15-037 322.54778 12.20403 18.73 0.53 -0.501 0.160 1.625 0.108 0.253 -99.5 SGB
M 15-038 322.55914 12.17986 18.73 0.55 -0.523 0.166 1.551 0.108 0.231 -95.7 SGB
M 15-039 322.52602 12.20912 18.74 0.53 -0.463 0.166 1.488 0.106 0.291 -109.6 SGB
M 15-040 322.52675 12.15351 18.74 0.55 -0.812 0.162 1.636 0.106 -0.058 -108.0 SGB
M 15-041 322.52690 12.22016 18.75 0.49 -0.568 0.159 1.542 0.102 0.186 -98.4 SGB
M 15-042 322.54846 12.16648 18.77 0.53 -0.569 0.176 1.606 0.113 0.185 -105.8 SGB
M 15-043 322.53786 12.17810 18.77 0.54 -0.711 0.169 1.562 0.112 0.044 -94.2 SGB
M 15-044 322.53134 12.14044 18.81 0.45 -0.751 0.161 1.664 0.107 0.004 -96.5 MS
M 15-045 322.55098 12.12310 18.93 0.46 -0.636 0.168 1.551 0.112 0.120 -95.2 MS
M 15-046 322.53416 12.22428 19.03 0.47 -0.789 0.187 1.598 0.121 -0.032 -112.1 MS
M 15-047 322.54493 12.13650 19.11 0.44 -0.758 0.179 1.583 0.119 0.000 -98.4 MS
M 15-048 322.56599 12.17154 19.14 0.50 -0.604 0.201 1.522 0.129 0.154 -104.0 MS
M 15-049 322.54341 12.22215 19.16 0.40 -0.551 0.192 1.522 0.122 0.207 -97.7 MS
M 15-050 322.56476 12.21860 19.18 0.49 -0.487 0.198 1.566 0.126 0.272 -123.3 MS
M 15-051 322.53418 12.11048 19.19 0.44 -0.680 0.186 1.575 0.124 0.079 -87.8 MS
M 15-052 322.51745 12.13259 19.22 0.44 -0.536 0.197 1.607 0.127 0.223 -96.2 MS
M 15-053 322.54789 12.11769 19.27 0.43 -0.590 0.185 1.569 0.126 0.170 -89.0 MS
M 15-054 322.55332 12.19854 19.28 0.47 -0.612 0.207 1.602 0.138 0.148 -111.4 MS
M 15-055 322.55024 12.12708 19.30 0.43 -0.735 0.206 1.499 0.134 0.025 -88.1 MS
M 15-056 322.55543 12.10858 19.34 0.45 -0.560 0.217 1.559 0.134 0.200 -92.5 MS
M 15-057 322.55270 12.20177 19.51 0.45 -0.780 0.236 1.606 0.153 -0.018 -108.5 MS
                       
Pal12-001 326.66154 -21.24816 16.21 0.90 -0.197 0.100 2.273 0.052 0.227 -5.7 RGB
Pal12-002 326.66939 -21.23127 16.61 0.88 0.151 0.105 2.509 0.057 0.627 8.5 RGB
Pal12-003 326.65155 -21.24316 16.88 0.79 -0.578 0.108 2.208 0.062 -0.068 14.0 HB
Pal12-004 326.67071 -21.25261 16.92 0.75 -0.442 0.094 2.121 0.056 0.073 18.5 HB
Pal12-005 326.67863 -21.26354 16.97 0.74 -0.567 0.095 2.068 0.058 -0.045 17.5 HB
Pal12-006 326.65697 -21.24051 17.01 0.74 -0.403 0.101 2.121 0.059 0.123 7.6 HB
Pal12-007 326.65288 -21.22877 17.02 0.75 -0.540 0.114 2.178 0.064 -0.012 1.2 HB
Pal12-008 326.65937 -21.20296 17.12 0.90 -0.283 0.127 2.347 0.069 0.258 -3.2 RGB
Pal12-009 326.65128 -21.25646 17.15 0.91 -0.363 0.125 2.383 0.069 0.182 17.7 RGB
Pal12-010 326.64049 -21.22997 17.16 0.90 -0.270 0.129 2.332 0.070 0.276 13.7 RGB
Pal12-011 326.64705 -21.25434 17.49 0.87 -0.461 0.148 2.407 0.083 0.127 24.6 RGB
Pal12-012 326.65240 -21.25516 17.56 0.86 -0.180 0.152 2.361 0.086 0.417 26.7 RGB
Pal12-013 326.64743 -21.24233 17.94 0.83 -0.655 0.174 2.288 0.098 -0.009 23.8 RGB
Pal12-014 326.63603 -21.20655 18.23 0.79 -0.387 0.185 2.398 0.108 0.296 -3.9 RGB
Pal12-015 326.65325 -21.29261 18.50 0.75 -0.302 0.192 2.315 0.117 0.415 26.1 RGB
Pal12-016 326.67134 -21.23422 18.67 0.76 -0.542 0.239 2.277 0.142 0.196 2.1 RGB
Pal12-017 326.65305 -21.19291 18.70 0.75 -0.708 0.231 2.343 0.141 0.034 5.2 RGB
Pal12-018 326.64222 -21.29505 18.72 0.93 -0.225 0.307 2.367 0.146 0.520 -4.6 RGB
Pal12-019 326.65428 -21.23765 18.84 0.76 -0.548 0.261 2.335 0.158 0.213 -1.1 RGB
Pal12-020 326.68273 -21.26678 19.00 0.75 -0.764 0.279 2.357 0.171 0.018 17.1 RGB
Pal12-021 326.65948 -21.26204 19.05 0.72 -0.467 0.275 2.209 0.160 0.320 16.7 RGB
Pal12-022 326.65316 -21.22022 19.71 0.57 -0.721 0.308 2.045 0.197 0.151 -5.9 SGB
Pal12-023 326.63146 -21.27247 20.10 0.41 -0.524 0.326 1.815 0.211 0.398 16.7 SGB
Pal12-024 326.63589 -21.27544 20.43 0.39 -0.712 0.373 1.829 0.234 0.251 44.1 MS
Pal12-025 326.65113 -21.27800 20.72 0.36 -0.846 0.395 1.659 0.265 0.154 32.6 MS




Copyright ESO 2008