Table 3: Correlations summary.
Var. A Var. B N. objects r $\rho$ $P(\rho)$ Slope q rms

$P_{\rm B}$
$P_{\rm j}$ 23 0.84 0.76 $3\times10^{-5}$ $1.10 \pm 0.11$ - $1.91 \pm 0.20$ 0.40
$P_{\rm B}^{*}$ $P_{\rm j}^{*}$ 9 0.94 0.93 0.0003 $1.33\pm0.11$ -2.18 0.20
kT P$_{\rm j}$ 23 -0.04 -0.08 0.73 - $1.25\pm0.66$ -0.06 0.82
$n_{\rm e}$ $P_{\rm j}$ 23 0.34 0.29 0.18 $1.13\pm0.21$ -0.17 0.77
$M_{\rm BH}$ P$_{\rm j}$ 23 0.59 0.60 0.002 $2.01 \pm 0.23$ -17.6 0.66
$M_{\rm BH}$ P$_{\rm j}$ 44 0.46 0.48 0.001 $2.05\pm0.20$ -17.4 0.94
${\cal S}_{1~{\rm kpc}}$ $P_{\rm j}$ 43 0.73 0.72 $8\times10^{-8}$ $1.17 \pm 0.11$ 4.89 0.67
Columns (1) and (2) the correlated variables; Col. (3) the number of objects used; Col. (4) the linear correlation coefficient r; Col. (5) the Spearman's rank correlation $\rho$ and (6) the probability of no correlation between the variables; Col. (7) the slope of the correlation; Col. (8) the intercept q; Col. (9) the rms scatter from the correlation. * : $P_{\rm B}$-$P_{\rm j}$ relation using only data from the 9 objects in Allen et al. (2006).

Source LaTeX | All tables | In the text