Table 1:
Chemical surface reactions r assumed to form the solid materials s. The efficiency of the reaction is limited by the collision rate of the key species, which has the lowest abundance among the reactants. The notation
in the rhs column means that only every second collision (and sticking) event initiates one reaction (see
in Eqs. (4) and (10)). Data sources for the supersaturation ratios (and saturation vapour pressures): (1) Helling & Woitke (2006); (2) Nuth & Ferguson (2006); (3) Sharp & Huebner (1990).
Index r |
Solid s |
Surface reaction |
Key species |
1 |
TiO2[s] |
TiO2
TiO2[s] |
TiO2 |
2 |
rutile |
Ti + 2 H2O
TiO2[s] + 2 H2 |
Ti |
3 |
(1) |
TiO + H2O
TiO2[s] + H2 |
TiO |
4 |
|
TiS + 2 H2O
TiO2[s] + H2S + H2 |
TiS |
5 |
SiO2[s] |
SiO2
SiO2[s] |
SiO2 |
6 |
silica |
SiO + H2O
SiO2[s] + H2 |
SiO |
7 |
(3) |
SiS + 2 H2O
SiO2[s] + H2S + H2 |
SiS |
8 |
SiO[s] |
SiO
SiO[s] |
SiO |
9 |
silicon mono-oxide |
SiO2 + H2
SiO[s] + H2O |
SiO2 |
10 |
(2) |
SiS + H2O
SiO[s] + H2S |
SiS |
11 |
Fe[s] |
Fe
Fe[s] |
Fe |
12 |
solid iron |
FeO + H2
Fe[s] + H2O |
FeO |
13 |
(1) |
FeS + H2
Fe[s] + H2S |
FeS |
14 |
|
Fe(OH)2 + H2
Fe[s] + 2 H2O |
Fe(OH)2 |
15 |
FeO[s] |
FeO
FeO[s] |
FeO |
16 |
iron (II) oxide |
Fe + H2O
FeO[s] + H2 |
Fe |
17 |
(3) |
FeS + H2O
FeO[s] + H2S |
FeS |
18 |
|
Fe(OH)2
FeO[s] + H2 |
Fe(OH)2 |
19 |
FeS[s] |
FeS
FeS[s] |
FeS |
20 |
iron sulphide |
Fe + H2S
FeS[s] + H2 |
Fe |
21 |
(3) |
FeO + H2S
FeS[s] + H2O |
FeO, H2S |
22 |
|
Fe(OH)2 + H2S
FeS[s] + 2 H2O |
Fe(OH)2, H2S |
23 |
Fe2O3[s] |
2 Fe + 3 H2O
Fe2O3[s] + 3 H2 |
Fe |
24 |
iron (III) oxide |
2 FeO + H2O
Fe2O3[s] + H2 |
FeO |
25 |
(3) |
2 FeS + 3 H2O
Fe2O3[s] + 2 H2S + H2 |
FeS |
26 |
|
2 Fe(OH)2
Fe2O3[s] + H2O + H2 |
Fe(OH)2 |
27 |
MgO[s] |
MgO
MgO[s] |
MgO |
28 |
periclase |
Mg + H2O
MgO[s] + H2 |
Mg |
29 |
(3) |
2 MgOH
2 MgO[s] + H2 |
MgOH |
30 |
|
Mg(OH)2
MgO[s] + H2O |
Mg(OH)2 |
31 |
MgSiO3[s] |
Mg + SiO + 2 H2O
MgSiO3[s] + H2 |
Mg, SiO |
32 |
enstatite |
Mg + SiS + 3 H2O
MgSiO3[s] + H2S + 2 H2 |
Mg, SiS |
33 |
(3) |
2 MgOH + 2 SiO + 2 H2O
2 MgSiO3[s] + 3 H2 |
MgOH,
SiO |
34 |
|
2 MgOH + 2 SiS + 2 H2O
2 MgSiO3[s] + 2 H2S + 2 H2 |
MgOH,
SiS |
35 |
|
Mg(OH)2 + SiO
2 MgSiO3[s] + H2 |
Mg(OH)2, SiO |
36 |
|
Mg(OH)2 + SiS + H2O
MgSiO3[s] + H2S+ H2 |
Mg(OH)2, SiS |
37 |
Mg2SiO4[s] |
2 Mg + SiO + 3 H2O
Mg2SiO4[s] + 3 H2 |
Mg, SiO |
38 |
forsterite |
2 MgOH + SiO + H2O
Mg2SiO4[s] + 2 H2 |
MgOH, SiO |
39 |
(3) |
2 Mg(OH)2 + SiO
Mg2SiO4[s] + H2O + H2 |
Mg(OH)2, SiO |
40 |
|
2 Mg + SiS + 4 H2O
Mg2SiO4[s] + H2S + 3 H2 |
Mg, SiS} |
41 |
|
2 MgOH + SiS + 2 H2O
Mg2SiO4[s] + H2S + 2 H2 |
MgOH, SiS} |
42 |
|
2 Mg(OH)2 + SiS
Mg2SiO4[s] + H2 + H2S |
Mg(OH)2, SiS} |
43 |
Al2O3[s] |
2 Al + 3 H2O
Al2O3[s] + 3 H2 |
Al |
44 |
aluminia |
2 AlOH + H2O
Al2O3[s] + 2 H2 |
AlOH |
45 |
(3) |
2 AlH + 3 H2O
Al2O3[s] + 4 H2 |
AlH |
46 |
|
Al2O + 2 H2O
Al2O3[s] + 2 H2 |
Al2O |
47 |
|
2 AlS + 3 H2O
Al2O3[s] + 2 H2S + H2 |
AlS |
48 |
|
2 AlO2H
Al2O3[s] + H2O |
AlO2H |
49 |
CaTiO3[s] |
Ca + TiO + 2 H2O
CaTiO3[s] + 2 H2 |
Ca, TiO |
50 |
perovskite |
Ca + TiO2 + H2O
CaTiO3[s] + H2 |
Ca, TiO |
51 |
(3) |
Ca + Ti + 3 H2O
CaTiO3[s] + 3 H2 |
Ca, Ti |
52 |
|
CaO + Ti + 2 H2O
CaTiO3[s] + 2 H2 |
CaO, Ti |
53 |
|
CaO + TiO + H2O
CaTiO3[s] + H2 |
CaO, TiO |
54 |
|
CaO + TiO2
CaTiO3[s] |
CaO, TiO |
55 |
|
CaS + Ti + 3 H2O
CaTiO3[s] + H2S + H2 |
CaS, Ti |
56 |
|
CaS + TiO + 2 H2O
CaTiO3[s] + H2S + 2 H2 |
CaS, TiO |
57 |
|
CaS + TiO2 + H2O
CaTiO3[s] + H2S |
CaS, TiO |
58 |
|
Ca(OH)2 + Ti + H2O
CaTiO3[s] + 2 H2 |
Ca(OH)2, Ti |
59 |
|
Ca(OH)2 + TiO
CaTiO3[s] + H2 |
Ca(OH)2, TiO |
60 |
|
Ca(OH)2 + TiO2
CaTiO3[s] + H2O |
 |