Table 2: Radius and central thermodynamic properties of a planet of mass $M_{\rm P}=1~M_{\rm J}$ at 1 Gyr for two heavy element mass fractions $Z=(M_Z/M_{\rm P})=50$% and Z=20%. The labels are the same as in Table 1. As mentioned at the end of Sect. 4.2, for Z=50%, the solution with $~{M}_{\rm core}=0$ and $Z=~{Z}_{\rm env}$ is similar to a solution with $~{M}_{\rm core}\sim 10~{M}_\oplus$ and the rest of the heavy material distributed in the envelope.
Z $~{M}_{\rm core}$ EOS (core) $~{Z}_{\rm env}$ EOS(env) $R_{\rm p}$ $T_{\rm c}$ $\rho_{\rm c}$
  ( ${M}_\oplus $)     env. ($R_{\rm J}$) (K) (g cm-3)

0.5
159 W-a 0 SC 0.861 5.3 $\times$ 104 20.89
  159 W-s 0 SC 0.841 6.8 $\times$ 104 28.31
  159 R-a 0 SC 0.802 7.2 $\times$ 104 47.11
  159 R-s 0 SC 0.789 8.6 $\times$ 104 59.87
  159 I-a 0 SC 0.746 1.1 $\times$ 105 156.93
  0   0.5 SC (0.775a) 0.782 7.7 $\times$ 104 8.88
  0   0.5 SC+W-a 0.765 3.4 $\times$ 104 8.13
  0   0.5 SC+W-s 0.811 5.8 $\times$ 104 7.36
0.20 63.6 W-a 0 SC 1.026 4.3 $\times$ 104 13.98
  0   0.2 SC (0.475a) 0.994 3.9 $\times$ 104 4.38
  0   0.2 SC+W-a 0.986 3.2 $\times$ 104 4.18
  0   0.2 SC+W-s 1.006 3.7 $\times$ 104 4.06
a Value of $~{Y}_{\rm equiv}$.

Source LaTeX | All tables | In the text