Table 3: Maximum redshift of detection by AGILE and GLAST as a function of the fireball Lorentz factor $\Gamma $, the flare luminosity L, the ratio $(\epsilon _{\rm e}/\epsilon _B)$, and the flare temporal variability $t_{\rm v}$, and the instrumental integration time $T_{\rm int}$.
Satellite $\Gamma $ L $\epsilon_{\rm e}/\epsilon_B$ $t_{\rm v}$ $T_{\rm int}$ $z_{\rm max}$ $E_{\rm p}$ $E_{\rm cut}$
    $ \rm [erg~ s^{-1}]$   [ms] [s]   [keV] [MeV]

AGILE
100 $2 \times 10^{49}$ 4.5 100 500 1.2 0.16 $8.0 \times 10^{3}$
GLAST 100 $2 \times 10^{49}$ 4.5 100 500 1.4 0.15 $7.4 \times 10^{3}$
AGILE 100 $2 \times 10^{49}$ 4.5 100 100 0.6 0.22 $1.1 \times 10^{4}$
GLAST 100 $2 \times 10^{49}$ 4.5 100 100 0.7 0.22 104
AGILE 100 1050 4.5 100 500 2.4 0.23 $1.2 \times 10^{3}$
GLAST 100 1050 4.5 100 500 2.8 0.21 $1.1 \times 10^{3}$
AGILE 100 1050 4.5 100 100 1.2 0.36 $1.9 \times 10^{3}$
GLAST 100 1050 4.5 100 100 1.4 0.33 $1.7 \times 10^{3}$
AGILE 100 $2 \times 10^{49}$ 450 100 500 2.5 $5.2 \times 10^{-3}$ $8.0 \times 10^{3}$
GLAST 100 $2 \times 10^{49}$ 450 100 500 2.7 $4.9 \times 10^{-3}$ $7.6 \times 10^{3}$
AGILE 100 $2 \times 10^{49}$ 450 100 100 1.2 $8.3 \times 10^{-3}$ $1.3 \times 10^{4}$
GLAST 100 $2 \times 10^{49}$ 450 100 100 1.3 $8.0 \times 10^{-3}$ $1.2 \times 10^{4}$
AGILE 100 1050 450 100 500 5.2 $6.6 \times 10^{-3}$ $1.1 \times 10^{3}$
GLAST 100 1050 450 100 500 5.5 $6.3 \times 10^{-3}$ 103
AGILE 100 1050 450 100 100 2.6 $1.1 \times 10^{-2}$ $1.8 \times 10^{3}$
GLAST 100 1050 450 100 100 2.8 $1.1 \times 10^{-2}$ $1.7 \times 10^{3}$
AGILE 25 $2 \times 10^{49}$ 4.5 $4 \times 10^4$ 500 0.8 $7.8 \times 10^{-3}$ $1.7 \times 10^{3}$
GLAST 25 $2 \times 10^{49}$ 4.5 $4 \times 10^4$ 500 0.9 $7.4 \times 10^{-3}$ $1.6 \times 10^{3}$
AGILE 25 $2 \times 10^{49}$ 4.5 $4 \times 10^4$ 100 0.35 0.01 $2.2 \times 10^{3}$
GLAST 25 $2 \times 10^{49}$ 4.5 $4 \times 10^4$ 100 0.4 0.01 $2.2 \times 10^{3}$


Source LaTeX | All tables | In the text