Table 1: Appearance of the first few Lyman lines for the computations not including any feedback. In particular we give the approximate redshift, $z_{\rm max}$, at which $\Delta I_\nu (z_{\rm em})$ is maximal (see Fig. 1), and the redshift at which the peak of the line reaches the next lower Lyman resonance, $z_{\rm f}\approx z_{\rm max}~\nu_{{\rm Ly}(n-1)}/\nu_{{\rm Ly}n}$, where $\nu _{{\rm Ly}k}$ is the resonance frequency of the Lyman-k transition. Also we give the approximate total number ofescaping photons per hydrogen nucleus for each transition.
Line n $\nu_{{\rm Ly}n}$ [Hz] $z_{\rm max}$ $z_{\rm f}$ $N_\gamma/N_{\rm H}$
Lyman-$\alpha $ 2 $2.4674 \times 10^{15}$ 1400 - $4.3 \times 10^{-1}$
Lyman-$\beta $ 3 $2.9243 \times 10^{15}$ 1450 1223 $1.8 \times 10^{-3}$
Lyman-$\gamma $ 4 $3.0842 \times 10^{15}$ 1461 1385 $2.9 \times 10^{-4}$
Lyman-$\delta$ 5 $3.1583 \times 10^{15}$ 1464 1430 $1.3 \times 10^{-4}$
Lyman-$\epsilon$ 6 $3.1985 \times 10^{15}$ 1467 1449 $7.9 \times 10^{-5}$


Source LaTeX | All tables | In the text