Table 4: Fitting of power law and exponential models to distributions of the grand minima and maxima occurrence: For the differential distribution the value of $\chi ^2$ is shown together with the corresponding confidence level (in parentheses) for 4 degrees of freedom.
  Differential distribution Cumulative distribution
Series Power law Exponential Power law Exponential
A) SN-L $\gamma=1.61\pm 0.1$ $\tau=330\pm 50$ yr $\Gamma=0.95\pm 0.02$ $T=435\pm 15$ yr
min WTD $\chi^2=0.35$ (0.99) $\chi^2=2.2$ (0.7)    
B) SN-L $\gamma=1.36\pm 0.1$ $\tau=430\pm 30$ yr $\Gamma=0.77\pm 0.05$ $T=355\pm 20$ yr
max WTD $\chi^2=0.26$ (0.992) $\chi^2=1.8$ (0.79)    
C) SN-S $\gamma=1.82\pm 0.06$ $\tau=250\pm 40$ yr $\Gamma=0.95\pm 0.04$ $T=290\pm 25$ yr
max WTD $\chi^2=0.22$ (0.994) $\chi^2=6.5$ (0.16)    
D) SN-L $\gamma=1.25\pm 0.18$ $\tau=51\pm 5$ yr $\Gamma=1.22\pm 0.12$ $T=55\pm 2$ yr
max duration $\chi^2=1.06$ (0.9) $\chi^2=0.58$ (0.97)    
E) SN-S $\gamma=1.5\pm 0.6$ $\tau=50\pm 10$ yr $\Gamma=1.44\pm 0.14$ $T=59\pm 6$ yr
max duration $\chi^2=7.0$ (0.14) $\chi^2=3.3$ (0.51)    


Source LaTeX | All tables | In the text