A&A 469, 319-330 (2007)
DOI: 10.1051/0004-6361:20077344
P. E. Nissen1 - C. Akerman2 - M. Asplund3 - D. Fabbian3 - F. Kerber4 - H. U. Käufl4 - M. Pettini2
1 -
Department of Physics and Astronomy, University of Aarhus, 8000
Aarhus C, Denmark
2 - Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
3 -
Research School of Astronomy and Astrophysics,
Australian National University,
Cotter Road, Weston, ACT 2611, Australia
4 -
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching,
Germany
Received 23 February 2007 / Accepted 2 April 2007
Abstract
Aims. Based on a new set of sulphur abundances in very metal-poor stars and an improved analysis of previous data, we aim at resolving current discrepancies on the trend of S/Fe vs. Fe/H and thereby gain better insight into the nucleosynthesis of sulphur. The trends of Zn/Fe and S/Zn will also be studied.
Methods. High resolution VLT/UVES spectra of 40 main-sequence stars with -3.3 < [Fe/H] < -1.0 are used to derive S abundances from the weak
S I line and the stronger
pair of S I lines. For one star, the S abundance is also derived from the S I triplet at 1.046
m recently observed with the VLT infrared echelle spectrograph CRIRES. Fe and Zn abundances are derived from lines in the blue part of the UVES spectra, and effective temperatures are obtained from the profile of the H
line.
Results. Comparison of sulphur abundances from the weak and strong S I lines provides important constraints on non-LTE effects. The high sulphur abundances reported by others for some metal-poor stars are not confirmed; instead, when taking non-LTE corrections into account, the Galactic halo stars distribute around a plateau at [S/Fe
dex with a scatter of 0.07 dex only. [Zn/Fe] is close to zero for metallicities in the range -2.0 < [Fe/H] < -1.0 but increases to a level of [Zn/Fe
to +0.2 dex in the range -2.7 < [Fe/H] < -2.0. At still lower metallicities [Zn/Fe] rises steeply to a value of [Zn/Fe
dex at [Fe/H] = -3.2.
Conclusions. The trend of S/Fe vs. Fe/H corresponds to the trends of Mg/Fe, Si/Fe, and Ca/Fe and indicates that sulphur in Galactic halo stars has been made by -capture processes in massive SNe. The observed scatter in S/Fe is much smaller than predicted from current stochastic models of the chemical evolution of the early Galaxy, suggesting that either the models or the calculated yields of massive SNe should be revised. We also examine the behaviour of S/Zn and find that departures from the solar ratio are significantly reduced at all metallicities if non-LTE corrections to the abundances of these two elements are adopted. This effect, if confirmed, would reduce the usefulness of the S/Zn ratio as a diagnostic of past star-formation activity, but would bring closer together the values measured in damped Lyman-alpha systems and in Galactic stars.
Key words: stars: abundances - stars: atmospheres - Galaxy: halo - galaxies: abundances - galaxies: high-redshift
Other investigations point, however, to an increasing trend of [S/Fe] towards lower metallicities (Israelian & Rebolo 2001;
Takada-Hidai et al. 2002) with [S/Fe] reportedly reaching as high as
+0.8 dex at
.
As discussed by Israelian & Rebolo,
such high values of [S/Fe] may be explained if
SNe with very large explosion energies of
erg
(so-called hypernovae) make a substantial contribution to the
nucleosynthesis of elements in the early Galaxy (Nakamura et al.
2001). An alternative explanation of an
increasing trend of [S/Fe] towards lower metallicities has been
proposed by Ramaty et al. (2000): assuming a short
mixing time (
1 Myr) for supernovae-synthesized volatile elements
like oxygen and sulphur and a longer mixing time (
30 Myr)
for refractory elements like Fe, high values
of [O/Fe] and [S/Fe] are expected in the early Galaxy.
In a recent paper by Caffau et al. (2005), more puzzling
data on [S/Fe] in halo stars have been obtained. Both high
dex and low
dex are found in the
metallicity range
(see Fig. 10 of Caffau et al.),
suggesting a dichotomy of [S/Fe]. If real, this
points to a very complicated chemical evolution of sulphur
in the early Galaxy.
Additional problems have been revealed by Takeda et al.
(2005), who find that S abundances derived from the weak
S I line are systematically higher than S abundances derived from the stronger
pair
of lines when their new non-LTE corrections are applied.
The uncertainty about the trend of [S/Fe] calls for further
studies of sulphur abundances in halo stars. In this paper we
present new sulphur abundances for 12 halo stars with
based on high-quality, near-IR spectra obtained with the VLT/UVES spectrograph.
We have also re-analyzed UVES spectra of 28 stars with
from Nissen et al. (2004, hereafter Paper I) determining
from the H
line in the same way as for the new stars
and improving the derivation of S abundances from the
lines by taking into account the opacity
contribution from the wings of the Paschen-zeta hydrogen line
at 9229 Å. In addition, possible non-LTE effects are investigated
by comparing S abundances obtained from the weak S I line at
8694.6 Å with data from the
S I lines.
We have also derived zinc abundances
from the
4810.5 Zn I lines.
Both S and Zn are among the few elements which are not
readily depleted onto dust in the interstellar medium of the
Milky Way and are present in the gas-phase in near-solar
proportions. For this reason, they are key to studies of
metal enrichment in distant galaxies, particularly those
detected as damped Lyman-alpha systems (DLAs) in the
spectra of high redshift QSOs.
Assuming that sulphur behaves like other
-capture elements and that Zn follows Fe, the S/Zn ratio may
be used to date the star formation process in DLAs
(Wolfe et al. 2005). A clarification
of the trends of both S and Zn for Galactic stars is important to test
if these assumptions are correct.
The UVES setup was the same as described in Paper I
except that no image slicer was applied when imaging
the star onto the 0.7 arcsec wide entrance slit. Briefly, we mention
that the dichroic mode of UVES was used to cover the spectral region
3750-5000 Å in the blue arm and
6700-10 500 Å in the
red arm, in both cases with a spectral resolving power of
.
The blue region contains
a number of Fe II lines suitable for determining the iron abundance,
and two Zn I lines.
In the red region we find the weak
8694.6 S I line
as well as the stronger S I lines at 9212.9 and 9237.5 Å.
Typical S/N ratios are 300
in the blue spectral region, 250-300 at the
S I line,
and 150-200 in the 9212-9238 Å region.
![]() |
Figure 1:
The VLT/UVES spectrum of HD 84937 in the spectral
region 9210-9240 Å overlaid with the B2III spectrum of HR 5488. Below
is the spectrum of HD 84937
(shifted ![]() |
Open with DEXTER |
The spectra were reduced by using standard IRAF routines for order definition, background subtraction, flat-field correction, order extraction with sky subtraction and wavelength calibration. Continuum fitting was performed with the IRAF task continuum using spline functions with a scale of a few Å. Since many continuum windows are available for these metal-poor stars, even in the blue part of the spectrum, this method works well.
The quality of the 2004 spectra is about the same as shown in Fig. 2 of
Paper I. As an additional illustration of
the removal of telluric lines, we show the spectrum of HD 84937 in
Fig. 1. This bright star was observed with particularly
high S/N. As seen from the figure, the
S I line is
completely overlapped by a telluric line, but after division
with the scaled B-type spectrum of HR 5488, the line emerges
very clearly. Due to the radial velocity difference of the two stars,
the P
H I line at 9229 Å is seen as a broad feature
in "emission'' from HR 5488 overlaid with a narrower
absorption line from HD 84937. The wings
of the P
line are lost and therefore the equivalent widths of the S I lines can only be measured relative to the local continuum. Hence,
when using their equivalent widths to derive S abundances, the opacity
contribution from the P
line should be taken into account.
![]() |
Figure 2: The VLT/UVES spectrum of HD 84937 in the spectral region 8685-8705 Å overlaid with the B2III spectrum of HR 5488. Below is the spectrum of HD 84937 (shifted down 0.04 units in relative flux) after division with the spectrum of HR 5488. |
Open with DEXTER |
Interference fringing is another problem in
the near-IR part of the spectrum. The fringes on the UVES MIT CCD
have an amplitude of 20-40% at 9000 Å. After
flat-fielding, residual
fringes at a level of 0.5 % remain as seen from Fig. 2.
As discussed by Korn & Ryde (2005), this makes it
difficult to determine precise S abundances of halo
stars from the weak
S I line.
B-type stars may, however, also be used to correct for the residual fringing
as illustrated in Fig. 2. After division by the spectrum
of HR 5488, the spectrum of HD 84937 has a
.
Without such a correction, the error of the S abundance derived
from the
line can be large, especially for stars
with
.
Equivalent widths of S, Fe and Zn lines
were measured by Gaussian fitting or direct integration
if the fit was poor and are given in Table A.1 for
the 12 stars observed in 2004. The corresponding table for
the Paper I stars is available at the
CDS.
The determination of the effective temperature (
)
as well as
the abundances of S, Fe and Zn is based on
-element enhanced
([
/Fe] = +0.4,
= O, Ne, Mg, Si, S, Ca, and Ti)
1D model atmospheres computed with the Uppsala MARCS code.
Updated continuous opacities (Asplund et al. 1997)
including UV line blanketing are used.
LTE is assumed both in constructing the models and in deriving
and the abundances. Convection is treated in the
approximation of Henyey et al. (1965)
with a mixing-length parameter of
,
and
a temperature distribution in the convective elements
determined by the diffusion equation (parameter
).
The reader is referred to Ludwig et al. (1999) for a summary of
the parameters used in different versions of the mixing length theory.
The H
line is well centered in an echelle order having a
width of approximately 80 Å. After flat-fielding, the continua
of the two adjacent echelle orders were fitted by low order
spline functions and the continuum of the H
order was determined
by interpolation between these functions in pixel space. The H
echelle order is not wide enough to reach the true continuum, but the
method allows one to use the inner
30 Å of the profile to
derive
from a comparison with synthetic H
profiles for
a grid of model atmospheres. In addition to the 12 new stars,
was also re-determined in this way for stars from Paper I.
![]() |
Figure 3:
Observed H![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
To illustrate this method,
Fig. 3 shows the H
profiles in the spectra of two stars
compared to synthetic profiles calculated as described
in Barklem et al. (2002) using Stark broadening
from Stehlé & Hutcheon (1999) and self-broadening from
Barklem et al. (2000a).
A few metallic absorption lines have been removed by interpolating
the H
profile across these lines. An index,
(UVES),
defined as the ratio of the total
flux in the two C-bands to the total flux in the two L bands
is used to determine
(see Appendix B).
Hence, we are not using the position of the
true continuum in determining
.
The center of the H
line is also
avoided, because the fit between theoretical and observed profiles is
poor around the line center due to non-LTE effects
(Przybilla & Butler 2004).
For stars with
,
the metal lines in
the H
line are so strong that the removal of
these lines by interpolation of the profile across the lines
is unreliable. Hence, six stars with
from
Paper I are not included in the present paper.
The symmetric appearance of the observed profiles shows that the
procedure of rectifying the H
echelle order has worked well.
In fact, the difference between
determined from the left
and the right part of the H
profile never exceeded 30 K.
The internal stability of the method is also very good; the effective
temperatures determined for a given star observed on different nights
agreed within
20 K. Another advantage is that the profile
of the H
line varies very little with gravity and metallicity.
Hence,
the errors in these parameters
have only a small effect on the derived
.
For a group of stars
with similar atmospheric parameters, like metal-poor turnoff stars,
one might therefore expect that differential values of
can be
determined with a precision of about
30 K from the H
profile.
The systematic error of
is, however, larger.
The fit between the theoretical and observed profiles is
not perfect in the central region of the H
line, and the estimated
value of
therefore depends to some extent on where the L-bands
of the H
index are placed.
The temperature structure of the model atmospheres also plays a role.
If the mixing-length parameter is decreased from
to 1.0, the derived
changes by about -25 K for metal-poor
stars at the turnoff (
K) and about -60 K
for cooler stars (
K).
![]() |
Figure 4:
The difference of effective temperatures derived from (
![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
The derived effective temperatures are given in Table 1.
Ten of the stars are
in common with Asplund et al. (2006), who determined
from the H
profile in independent UVES spectra. The average difference,
(H
)
-
(H
)
is 64 K with a rms scatter of the
deviation of
K. This small scatter confirms that precise
differential values of
can be determined from H
and H
for stars with similar atmospheric parameters,
but the systematic difference indicates that the absolute values of
are more uncertain. Interestingly, the systematic difference of
(H
)
and
(H
)
vanishes if the
mixing-length parameter is decreased to
.
The same
conclusion was reached by Fuhrmann et al. (1993)
for a set of Kurucz model atmospheres with the convective structure
parameter y = 0.5. Given that Barklem et al. (2002)
were not able to obtain a satisfactory fit to the H
and H
line profiles in the solar spectrum for any combination of the
convection parameters
and y, it seems, however, premature to change
these parameters from the standard values of the MARCS models.
Clearly, the model atmospheres and/or the line broadening theory need to be improved.
Although it is often argued in the literature that the wings of Balmer lines
are formed in LTE for late-type stars, very recent work suggests that this
may in fact not necessarily be true (Barklem 2007).
Unfortunately, the degree of departures from LTE depends critically
on still poorly known inelastic collisions with other neutral H atoms.
Some existing atomic calculations imply LTE while others yield
significant non-LTE effects.
A full 3D non-LTE analysis of Balmer line profiles in cool stars
with improved collisional data
is urgently needed to resolve this potentially significant systematic error.
The problem of systematic errors in the effective temperatures
of metal-poor stars is also evident when comparing
(H
)
with effective temperatures derived from the (
index using
three different colour-
calibrations (see Fig. 4).
Here, the V magnitude was taken from Strömgren photometry
(see Table B.1), and K from the 2MASS catalogue (Skrutski et al.
2006). Correction for reddening was applied according
to the relation
(Savage & Mathis 1979),
where
is derived as described in Appendix B.
The (
calibrations of Ramírez & Melendéz (2005b)
and Masana et al. (2006) refer directly to the 2MASS
magnitude system, whereas the Alonso et al. (1996)
calibration refer to the original Johnson (1966)
system. Hence, before applying the Alonso et al. calibration,
we converted
to
using
equations in Alonso et al. (1994) relating
to
(Elias et al. 1982) and the transformation
from
to
derived by Cutri et al. (2006).
These transformations all contain a small (
colour term, but
since our sample of stars are confined to a narrow
range in J-K, we get in a good approximation
for metal-poor stars in the turnoff region. If this transformation
had not been applied, the effective temperatures derived from (
with the Alonso et al. calibration would have been about 65 K lower.
As seen from Fig. 4, there is good agreement
between
from H
and from (
when using the
Alonso et al. (1996) calibration. Excluding the three known binary
stars, the mean difference,
is
K. The scatter
agrees well with the error of
expected from errors
in the reddening correction. Still, there is a tendency for
the residuals to increase with decreasing [Fe/H]. This tendency is even more
pronounced for the (
calibrations of
Ramírez & Melendéz (2005b) and
Masana et al. (2006).
When using the (
calibration of
Ramírez & Melendéz, stars with
have a mean deviation
of about -50 K, whereas stars with
have a mean deviation of +124 K.
Hence, our H
-based effective temperatures do not confirm the
hot
scale of very metal-poor turnoff stars derived by
Ramírez & Melendéz (2005a) from their
application of the infrared flux method.
Four of the stars in Table 1 are known to be
single-lined spectroscopic
binaries, i.e. G 66-30 (Carney et al. 2001),
G 126-62 and G 59-27 (Latham et al. 2002),
and CD
(Ryan et al. 1999).
As discussed by Ramírez et al. (2006) in the case of
G 126-62, these stars may have a cool companion that
causes too low a value of
to be derived from (
.
Indeed,
G 126-62 and G 59-27 exhibit some of the largest
deviations in Fig. 4, whereas G 66-30 does not
show a significant deviation. This star has an unusually high effective
temperature (
= 6470 K) for a halo star with [Fe/H] = -1.48,
and is classified as a blue straggler by Carney et al. (2001).
As in Paper I,
the surface gravity is determined from the fundamental relation
![]() |
(1) |
The Strömgren indices (b-y), m1 and c1were used to derive absolute visual magnitudes MV
(see Appendix B).
If the Hipparcos parallax (ESA 1997) of the star
is available with an error
,
then MV was also
determined directly and averaged with the photometric value. The
bolometric correction was adopted from Alonso et al. (1995)
and the stellar mass derived by interpolating in the MV-
diagram between the
-element enhanced evolutionary tracks of
VandenBerg et al. (2000). As discussed in Paper I,
the error of log g is estimated to be about
0.15 dex.
For one star, CD
, neither uvby-
photometry
nor the Hipparcos parallax is available. In this case, we estimated log g by requiring that the difference in the Fe abundance derived from
Fe I and Fe II lines should equal the average difference between the two sets
of Fe abundances for the other stars (see Sect. 4.1).
The derived values of
and log g are mutually dependent and are
also affected by [Fe/H]. Hence, the procedure of determining
atmospheric parameters and Fe abundances was iterated until consistency
was achieved. The final values obtained are given in Table 1.
Using MARCS model atmospheres with the parameters listed in Table 1, the Uppsala EQWIDTH and BSYN programs were used to compute equivalent widths of observed lines as a function of the corresponding element abundance. By interpolation to the observed equivalent width, the abundance of the element is then derived. A basic assumption is LTE, but the effect of possible departures from LTE will be discussed.
Collisional line broadening was included in accordance with Barklem
& Aspelund-Johansson (2005). For the large majority
of stars, the Fe II lines are so weak that the derived metallicity is
insensitive to possible errors in the van der Waals damping constant
and also practically independent of
the microturbulence parameter. Stars with
are
assumed to have
= 1.5 km s-1. For more metal-rich stars
was determined by requesting that the derived
[Fe/H] value should be independent of equivalent width.
For all new stars, the Fe abundance was also determined from seven unblended Fe I lines selected to be of similar strengths as the Fe II lines. Wavelengths, gf-values (adopted from O'Brian et al. 1991) and measured equivalent widths are given in Table A.1. Collisional broadening data were adopted from Barklem et al. (2000b).
![]() |
Figure 5:
The difference in S abundances derived from
the
![]() ![]() ![]() ![]() |
Open with DEXTER |
The average difference between Fe abundances
derived from Fe II and Fe I lines is 0.14 dex with a rms deviation
of 0.03 dex. This small scatter testifies to the high internal
precision obtained. The systematically higher Fe abundance obtained
from Fe II lines may be due to non-LTE effects on the Fe I lines
(see discussion in Asplund 2005),
although the scale of
and/or the gf-values could also play a
role. We note that the Fe II - Fe I differences are very similar to those
estimated in Asplund et al. (2006).
The [Fe/H] values given in Table 1
are based on the Fe II lines, and refer to an adopted
solar iron abundance of
log
= 7.50, which is close to the value inferred from weak Fe II lines in the solar spectrum using a MARCS model for the Sun
(Nissen et al. 2002).
As mentioned in Sect. 2, the equivalent widths of the S I lines at 9212.9 and 9237.5 Å were measured relative to the flux in
the wings of the Paschen-zeta H I line at 9229 Å. In Paper I, the
effect of P was neglected, but here we include
the opacity contribution from the wings when computing the
equivalent widths. As in the case of H
,
a version
of the Uppsala BSYN program kindly supplied by P. Barklem was used in
these calculations. The maximum effect of P
on the derived
S abundances occurs for the hottest turnoff stars and amounts to an
increase of log
by about 0.07 dex in the case of the 9237.5 Å line and about 0.02 dex for the 9212.9 Å line. After inclusion of the
P
opacity, there is an excellent agreement between
S abundances derived from the two lines with no significant trend of the
deviation as a function of
or [Fe/H] (see Fig. 5), in
contrast to the corresponding figure in Paper I, where a small but
significant trend with
was seen.
The sulphur abundances derived from the equivalent widths of the three S I lines are given in Table 1 together with the average value of [S/Fe]. For some stars it was tested that a detailed synthesis of the observed profiles of the S I lines yields practically the same abundances as the equivalent widths (see example in Fig. 6).
![]() |
Figure 6:
UVES observations (dots) of the
![]() ![]() |
Open with DEXTER |
Table 1 includes three bright halo stars, HD 84937,
HD 140283 and HD 181743, claimed by others
to have very high sulphur abundances,
,
whereas we find
these stars to have [S/Fe] around +0.3 dex. In trying to
find the reason for this discrepancy, we briefly discuss these stars.
Figure 7 shows the spectrum synthesis of their
S I lines at 8694 Å. The
instrumental and stellar line broadening profile was
approximated by a Gaussian with a FWHM of 8 km s-1 in the case of
HD 84937 and 6 km s-1 for the other two stars. These
values were derived from fitting the Fe I line at 8688.6 Å.
![]() |
Figure 7:
UVES spectra (jagged line) of the region around
the
![]() |
Open with DEXTER |
From a KECK/HIRES spectrum of HD 84937, Takada-Hidai et al.
(2002) measured the equivalent width of the
S I line to be
mÅ and derived log
= 5.7 corresponding
to [S/Fe] = +0.6. From our UVES spectrum we measure
mÅ, where the quoted (1-sigma) error
is estimated from the S/N of the spectrum and the uncertainty of the
continuum setting. The correspondingly derived sulphur abundance is
log
=
.
As shown in Fig. 7, this agrees
well with the spectrum synthesis of the line; a value as high as
log
= 5.7 is clearly excluded. Furthermore, we obtain
log
= 5.39 and 5.48 from the
S I lines.
Altogether, our sulphur abundance of HD 84937 is about a
factor of two lower than the value found by Takada-Hidai et al.
(2002).
We note that the large differences between sulphur abundances
derived in the cited works and in the present paper cannot be explained
in terms of different values of
and log g. In our view, it is
more likely
that the S abundances derived by others from the weak
S I line have been overestimated due to fringing residuals in their spectra.
In general, more precise S abundances can be derived from the
lines as they are more easily detected
and less susceptible to observational uncertainties. In this connection, it should
be noted that Caffau et al. find a few stars to have very high
[S/Fe] values even on the basis of these lines. Most remarkable is
BD
, for which they get [S/Fe] = +0.91. This star is,
however, a single-lined spectroscopic binary according to
Latham et al. (2002), which may have affected the determination of
and log g and hence the abundances of S and Fe.
In Paper I it was shown that the application of 3D hydrodynamical model
atmospheres instead of classical 1D models has a rather small effect
on the derived sulphur abundance (see also Asplund 2005).
For the large majority of our stars,
3D models lead to an
increase of log
by 0.05 to 0.10 dex. This
increase is, however, compensated by about the same increase in iron
abundance (see Table 5 in Paper I for details).
Hence, [S/Fe] is practically unchanged.
![]() |
Figure 8:
Comparison of S abundances derived from the S I 9212.9, 9237.5 Å pair and the
![]() ![]() ![]() |
Open with DEXTER |
It was noted in Paper I that the good agreement between S abundances
derived from the weak
S I line and the stronger
lines suggests that non-LTE effects on
the sulphur lines are small. Thanks to the recent non-LTE calculations
of Takeda et al. (2005), this statement may now be quantified.
From extensive statistical equilibrium calculations Takeda et al. show that
the
lines can suffer from significant
negative non-LTE corrections, whereas the non-LTE effects on the
line are small. The size of the corrections depend
on the rate of inelastic collisions with neutral hydrogen, for which
Takeda et al. adopt the classical approximation of Drawin
(1968, 1969) in the version
of Steenbock & Holweger (1984) with a scaling
factor
that is varied from 10-3 to 10.
As seen from the tables of Takeda et al. (2005), the non-LTE
effects vary quite strongly with
,
log g and [Fe/H], but interpolation
in the tables allows us to derive non-LTE corrections for our set of stars.
In Fig. 8, the resulting difference of the S abundance
derived from the
Å pair and the
line has been plotted for two values of
and also in the LTE case. As seen, both LTE and
give a
satisfactory agreement between the two sets of S abundances, whereas the
case of
can be excluded. The average difference and
dispersion of log
9212,9237 - log
8694 are as follows:
(LTE),
(non-LTE with
),
and
(non-LTE with
). This suggests
that hydrogen collisions are quite efficient in thermalizing the
S I atoms. Still, the non-LTE effects for the
lines may be of importance for the
derived [S/Fe] trend, due to varying non-LTE abundance corrections
as a function of [Fe/H].
In the case of
,
the corrections obtained by Takeda et al.
range from about -0.06 dex for the coolest
of our stars to about -0.25 dex for the hottest and
most metal-poor stars (e.g. G 64-12).
The CRIRES data was reduced by using standard IRAF tasks for subtraction of bias and dark, spectrum extraction, and wavelength calibration. Note that CRIRES supports high accuracy wavelength calibration by means of a Th-Ar hollow cathode lamp (Kerber et al. 2006). Flatfielding was performed by the aid of the extracted spectrum of the bright (V = 4.28) B9III star HD 15315. The resulting spectrum of G 29-23 is shown in Fig. 9 and compared with a spectral synthesis of the three sulphur lines.
![]() |
Figure 9:
The CRIRES spectrum of G 29-23 around the
1.046 ![]() ![]() |
Open with DEXTER |
Atomic data for the 1.046 m S I triplet are given in Table 2 together with the measured equivalent widths in the
G 29-23 spectrum. As in the case of the other S I lines the
gf values were taken from Lambert & Luck (1978)
and collisional broadening data are from Barklem et al. (2000b).
The derived LTE S abundances given in Table 2 agree very
well with the S abundances derived from the S I lines observed with UVES.
An average of [S/Fe] = +0.29 is obtained from the UVES lines and
[S/Fe] = +0.27 from the CRIRES lines. For all six S I lines the
mean sulphur abundances is log
= 5.79 and the rms deviation
is only 0.035 dex.
Although one should not put too much weight on a single star,
we consider this good agreement to be an important check of the
reliability of our sulphur abundance determinations.
According to Takeda et al. (2005), the non-LTE corrections
for the 1.046 m S I triplet are somewhat smaller than in the
case of the
Å lines. Hence, one
might in principle also use the 1.046
m triplet to study non-LTE
effects and calibrate the
parameter like we did when comparing
S abundances from the
line and the
pair. This would, however, require IR observations for many more stars
to provide statistically significant results.
Table 2:
Atomic data for the 1.046 m S I triplet.
Column 5 lists the equivalent width in the spectrum of
G 29-23 and the last column gives the derived
LTE sulphur abundance.
The Zn abundances are derived from the equivalent widths of the two Zn I lines at 4722.2 and 4810.5 Å. Adopted gf values (see Table A.1)
are from Biémont & Godefroid (1980), and
collisional broadening data were taken from Barklem et al. (2000b).
In Paper I, a solar Zn abundance of log
= 4.57 was
derived from the two lines, but this value is sensitive to
the solar microturbulence parameter. Here, we adopt log
= 4.60
as derived by Biémont & Godefroid (1980)
from six Zn I lines. This value is in good agreement with
the meteoritic value, log
=
(Asplund et al.
2005).
As seen from Table A.1, the zinc lines are very weak in turnoff stars
with metallicities below -2. The equivalent widths are on the
order of 2-3 mÅ in stars with
.
Still, the Zn lines can be clearly detected at metallicities
below -3 as seen from Fig. 10. This is connected to
the fact that the Zn/Fe ratio appears to rise steeply below
.
Takeda et al. (2005) have also
performed non-LTE calculations for the
Zn I lines. Generally, the absolute value of the non-LTE corrections are smaller
than in the case of the
S I lines, and
they have opposite sign. For a typical metal-poor turnoff star, the non-LTE
correction of the zinc abundance is on the order of +0.10 dex, whereas the
correction is -0.25 dex for the sulphur abundance. For cooler and
more metal-rich stars the non-LTE corrections on zinc are less than 0.1 dex.
These corrections refer to a hydrogen collisional parameter
,
and increase somewhat if
.
As discussed in Paper I, the absolute values of the 3D corrections of the Zn abundances are less than 0.1 dex and they are similar to the 3D corrections of the Fe abundances based on Fe II lines. Hence, the derived Zn/Fe ratio would not change significantly (at least not under the assumption of LTE) if 3D models were applied.
![]() |
Figure 10:
The
![]() ![]() |
Open with DEXTER |
The derived sulphur abundances are given in Table 1.
In the calculation of [S/Fe], solar abundances log
= 7.20 and log
= 7.50 were adopted.
Had we instead applied the newest solar abundances,
log
= 7.14 and log
= 7.45, determined by Asplund et al.
(2005), the [S/Fe] values would have increased by only 0.01 dex.
The [S/Fe] values in Table 1 are plotted vs.
[Fe/H] in Fig. 11 together with data for 25 disk stars from
Chen et al. (2002). The error bars shown refer to the
1-
statistical error caused by the uncertainty of
the observed equivalent widths and the atmospheric parameters
of the stars. In the case of [Fe/H], which is based on many Fe II lines, the dominating error comes from the uncertainty of the gravity;
dex corresponds to
dex
(see Table 4 in Paper I). The log g induced error of [S/Fe] is,
on the other hand, negligible, because a change in gravity has
nearly the same effect on S and Fe abundances. In the case
of [S/Fe] the major error contribution comes from the uncertainty of
and the error of the equivalent width measurements. For the three most
metal-poor stars with
,
the
induced error becomes particular
large, because only the
S I line is strong enough
to be detected and it is as weak as
mÅ.
As seen from Fig. 11, the LTE values of [S/Fe] suggest a small
slope of [S/Fe] as a function of [Fe/H], whereas the non-LTE values
give a nearly flat relation.
The mean [S/Fe] and the rms deviation for the halo stars are:
![]() |
Figure 11:
[S/Fe] vs. [Fe/H] for our sample of halo stars
supplemented with disk stars (shown as crosses) from Chen et al. (2002).
Filled circles with error bars show data based on S abundances derived from
the
![]() ![]() ![]() |
Open with DEXTER |
The trend of [S/Fe] in Fig. 11 corresponds rather well
to analogous trends
recently derived for [Mg/Fe], [Si/Fe] and [Ca/Fe] (Jonsell et al.
2005; Gehren et al. 2006). Qualitatively,
our data also agree with the trend of [S/Fe] predicted from models
of the chemical evolution of our Galaxy.
Based on the Woosley & Weaver (1995) yields of Type II SNe,
Goswami & Prantzos (2000) obtain a near-constant level
in the metallicity range
and a decline of [S/Fe] for
due to the additional supply of iron from Type Ia SNe.
Chiappini et al. (1999), on the other hand, obtain a
slope of [S/Fe] in the range
like the one we determine
in the LTE case, because they assume that Type Ia SNe start contributing
with iron already in the Galactic halo phase. Finally, Kobayashi et al.
(2006) predict a level of
based on
new yield calculations in a model where hypernovae are assumed to have
the same frequency as Type II SNe. We note that our
data do not allow us to establish conclusively whether a small slope
of [S/Fe] is present or not due to
the uncertainty about the non-LTE corrections. It should also be noted
that the predicted level of [S/Fe] among halo stars depends
critically on the assumed mass cut between the ejecta and the
collapsing core in massive SNe. Hence, any detailed comparison
between observed and predicted trends of [S/Fe] seems somewhat premature.
It is interesting to compare the observed scatter of
[S/Fe] with the scatter predicted from stochastic
chemical evolution models. In sharp contrast to the results of
Caffau et al. (2005), we find a very small scatter
(0.07 dex) of [S/Fe] among the halo stars, and there is no indication
that the scatter increases significantly towards the most metal-poor stars.
This scatter is not much higher than expected from the observational
errors of [S/Fe]. Hence, the cosmic scatter in [S/Fe] at a given
[Fe/H] must be less than 0.07 dex. A similar low scatter
has been obtained for other
-capture elements, when high
precision and homogeneous data have become available. Nissen et al.
(1994) found the scatter of Mg, Ca and Ti relative to Fe
to be <0.06 dex in the metallicity range
.
More
recently, Arnone et al. (2005) found the cosmic scatter of
[Mg/Fe] to be <0.06 dex for 25 turnoff stars
in the range
.
At still lower metallicities, Cayrel et al. (2004) find
a scatter of 0.10-0.15 dex for [Mg/Fe], [Si/Fe], [Ca/Fe] and [Ti/Fe] for
30 giant stars ranging in [Fe/H] from -4.1 to -2.7.
A similar low scatter of these ratios has been derived by
Cohen et al. (2004) for 28 dwarf stars in the metallicity range
.
The observed scatter of -capture elements
relative to Fe is much smaller than predicted from stochastic models
of the chemical evolution of metal-poor systems (Argast et al.
2000, 2002; Karlsson & Gustafsson 2005).
This is connected to the fact that calculated yields of Type II SNe
vary strongly with progenitor mass.
According to Nomoto et al. (1997), the yield ratio S/Fe increases
by a factor of 12 when the progenitor mass is changed from 13 to 40 solar masses.
Hence, in the early Galaxy, where only a few
supernovae enrich the interstellar gas of a star-forming cloud according to
current models, one would expect a much higher scatter in
[S/Fe] than the derived value of <0.07 dex for our sample of stars.
Sulphur has not been specifically modelled in any of the stochastic models,
but in the case
of Si that has similar yield variations as S, Argast et al.
(2000) predict a rms scatter of
0.35 dex at
,
0.25 dex at
,
and
0.12 dex at
.
As discussed in detail by
Arnone et al. (2005) and Karlsson & Gustafsson
(2005), possible explanations of this discrepancy
are: i) the calculated yield ratios are wrong, i.e. the released
amount of alpha-elements relative to Fe is nearly independent of
progenitor mass; ii) the IMF is biased to a narrow mass range in
the early Galaxy; and iii) the mixing of SNe ejecta is much more
rapid than assumed in the models, such that a large number of SNe
always contribute to the enrichment of a cloud. The last
possibility means that the mixing time scale of supernova ejecta
is considerably shorter than the cooling time of star-forming gas clouds.
It should be noted that the scatter in the abundance of
-capture elements relative to Fe probably increases towards
the more metal-rich end of the halo. Paper I includes
six halo stars with
,
four of which have
and two have
.
This scatter is in accordance with
the results of
Nissen & Schuster (1997), who find a similar dichotomy in
[
/Fe] for halo stars with
.
As suggested in their paper, the explanation of the scatter may be that
the metal-rich
-poor stars have formed in the outer regions of the
Galaxy where the star formation has proceeded so slowly that iron from
Type Ia SNe has been incorporated in them.
Supporting evidence has been obtained by Gratton et al. (2003),
who find [
/Fe] to be lower and more scattered in stars belonging
to the "accretion'' component of the Galaxy than in stars belonging
to the "dissipative'' component.
The LTE values of [Zn/Fe] are plotted as a function of
[Fe/H] in the upper panel of Fig. 12.
In the lower panel, non-LTE corrections of [Zn/Fe] from
Takeda et al. (2005) have been included. The error bars refer to the
1-
statistical error caused by the uncertainty of
the observed equivalent widths and the atmospheric parameters
of the stars. For the three most
metal-poor stars, the
-induced error is large,
because the equivalent widths of the Zn I lines are only about 1 mÅ.
As seen from the upper panel of Fig. 12, the LTE values of
[Zn/Fe] are close to zero in the metallicity range
.
In the range
,
all [Zn/Fe] values are, however,
positive with an average value of
.
Furthermore, [Zn/Fe] seems to rise steeply below
to a value of
.
This trend is reinforced if non-LTE corrections corresponding to
are applied, because the corrections to [Zn/Fe] are positive and increase
with decreasing [Fe/H]. Unlike the case of sulphur, we had no possibility
to calibrate the
parameter for zinc (our two Zn I lines
have nearly the same excitation potential), but we note that
if
(corresponding to a lower efficiency of thermalizing
the Zn atoms by inelastic collisions with hydrogen atoms) then the
non-LTE corrections for the metal-poor stars would be still larger.
![]() |
Figure 12:
[Zn/Fe] vs. [Fe/H] for our sample of halo stars.
The upper panel refers to LTE Zn abundances. The lower
panel includes non-LTE corrections from Takeda et al. (2005)
corresponding to a hydrogen collisional parameter
![]() |
Open with DEXTER |
The trend of [Zn/Fe] in Fig. 12 (LTE case) corresponds
very well to the trend found by Cayrel et al. (2004) from an
LTE analysis of the
Zn I lines in UVES
spectra of 35 giant stars with
.
Hence, there can be
little doubt that Zn is indeed overabundant with respect to iron for very
metal-poor stars, especially because the possible non-LTE corrections
go in the direction of making the overabundance larger.
Zinc is a key element in recent studies of nucleosynthesis and chemical
evolution in the early Galaxy (Umeda & Nomoto 2003, 2005;
Nomoto et al. 2006; Kobayashi et al. 2006). As shown by
Kobayashi et al. (2006), traditional yields of Type II SNe
(Nomoto et al. 1997) correspond to
,
i.e. far
below the observed values of [Zn/Fe]. In order to explain a level of
[Zn/Fe] around zero, one has to invoke models of hypernovae, i.e. core collapse
SNe with explosion energy
erg. Furthermore, a
mixing and fallback mechanism or an asymmetric explosion (Maeda & Nomoto
2003) has to be introduced
in order to bring up sufficient Zn from layers with complete Si burning.
By including such hypernovae with a frequency of 50% relative to Type II SNe
and a Salpeter IMF, Kobayashi et al. (2006) predict
in the Galactic halo. The upturn of [Zn/Fe] at the lowest
metallicities is, however, not predicted. In order to explain
,
Nomoto et al. (2006) suggest that stars with
have been formed from the ejecta of Pop. III hypernovae with very
large explosion energy. Another possibility for high Zn/Fe production is
from core-collapsing, very massive stars with
(Ohkubo et al. 2006).
![]() |
Figure 13:
[S/Zn] vs. [Zn/H] for Galactic stars and damped Lyman-alpha systems.
Typical 1-![]() |
Open with DEXTER |
Figure 13 shows [S/Zn] vs. [Zn/H] for our halo stars
except the three
with
,
which have such large errors in both S and Zn that
the ratio S/Zn becomes very uncertain. In addition, we have included six
halo stars with
from Paper I and 14 disk stars
with S and Zn abundances from Chen et al. (2002, 2004).
The upper panel shows LTE values; in the lower panel non-LTE corrections
(
)
from Takeda et al. (2005) have
been applied.
By comparing the two panels, the importance of the
non-LTE corrections is readily apparent.
When the corrections are applied,
there is an overall decrease in [S/Zn] at all but the highest values
of [Zn/H] considered here.
Furthermore, non-LTE effects are most
significant at low metallicities with the result that,
apparently, [S/Zn] reverts to solar values when
.
Such behaviour is unusual but, given our current limited
understanding of the nucleosynthesis of Zn, cannot be excluded.
Taken at face value, the lack of a strong metallicity trend in the lower panel of Fig. 13 would indicate that the usefulness of the S/Zn ratio as a "clock'' of the star-formation history is rather limited - departures from the solar value are generally small and, in particular, not much greater than the typical measurement error in DLAs. In Table C.1 we have collected all published, or about to be published, measurements of [S/Zn] in DLAs secured with echelle spectrographs on 8-10 m class telescopes. In comparison with the corresponding table in Paper I, the number of DLAs with accurate measures of the abundances of sulphur and zinc has doubled since 2004, from 10 to 20. These data are shown as triangles in Fig. 13.
Whereas in previous papers (e.g. Paper I) a systematic difference had been noted between the [S/Zn] ratio in Galactic metal-poor stars and in DLAs of comparable metallicities (evident in the top panel of Fig. 13), the situation is considerably less clear-cut if one adopts the non-LTE corrections to the abundances of S and Zn. If these corrections are appropriate, it would explain why so few DLAs show enhanced [S/Zn] values, when other ratios of alpha-capture to iron-peak elements apparently do, once dust depletions are accounted for (e.g. Prochaska & Wolfe 2002). A minor difference - which needs to be quantified with larger datasets - between Galactic stars and DLAs is the larger scatter in the [S/Zn] ratio possibly exhibited by the latter. It is intriguing, in particular, to find an underabundance of S relative to Zn in some DLAs with relatively high overall metallicities. If confirmed, the larger dispersion of the ratio in DLAs could be an indication that, as one might expect, the host galaxies of DLAs experienced a variety of different star formation histories, and don't necessarily follow closely the abundance trends seen in a single galaxy like the Milky Way.
From the results presented in this paper, we conclude that [S/Fe] in
Galactic halo stars shows the same kind of dependence on [Fe/H] as
[Mg/Fe], [Si/Fe] and [Ca/Fe], i.e. a near-constant ratio at a level of +0.2 to +0.3 dex. This strongly suggests that sulphur in the Galactic
halo was made by -capture processes in massive SNe, as
predicted from current models of Galactic chemical evolution with
yields calculated for hydrostatic and explosive oxygen and
silicon burning.
Among the 40 halo stars observed, we do not find a single case of the
high S/Fe ratios (
)
claimed in some recent papers
(Israelian & Rebolo 2001; Takada-Hidai et al. 2002;
Caffau et al. 2005). The majority of these high values were based on
the very weak
S I line and, as shown in Sect. 4.2,
our very high S/N, fringe-corrected spectra do not confirm the claimed
strength of this line in three metal-poor main-sequence stars.
A more convincing detection of the
S I line
has been obtained by Israelian & Rebolo (2001)
for two giant stars, HD 2665 and HD 2796 with [Fe/H] = -2.0 and -2.3.
The derived [S/Fe] values are +0.69 and +0.81 dex, respectively.
Further studies of S abundances in such metal-poor giant stars
would be interesting, especially if one could use
the forbidden sulphur line at 1.082
m, which
is expected to be insensitive to non-LTE effects.
From an observational point of view, the
pair of S I lines
or the S I triplet at 1.046
m provide more precise values
of the S abundance than the weak
S I line, but
according to Takeda et al. (2005) these stronger lines are quite
sensitive to departures from LTE.
The size of the non-LTE effects depends on
the efficiency of inelastic collisions with neutral hydrogen.
Adopting the classical formula of Drawin (1968, 1969)
with a scaling parameter
,
a comparison of S abundances from the
line and the
pair points
to
,
which means that we are not too far away
from LTE. Nevertheless, the non-LTE corrections may be of importance for the
derived trend of [S/Fe] as seen
from Fig. 11. Hence, it would be important to
perform improved quantum mechanical
calculations for inelastic S + H collisions as has
been achieved for Li + H collisions (Belyaev & Barklem 2003).
An interesting and robust result of our investigation is the
small scatter of [S/Fe] at a given metallicity. It is found to be around
dex in the whole range
.
A similarly low scatter
has been found for the other
-capture elements, i.e. [Mg/Fe],
[Si/Fe], and [Ca/Fe]
(Cayrel et al. 2004; Cohen et al. 2004).
Current stochastic models
of the chemical evolution of metal-poor systems (Argast et al.
2000, 2002; Karlsson & Gustafsson 2005)
predict a much higher scatter of [
/Fe] for metallicities below -2.
Clearly the models and/or calculated yield ratios of massive SNe
need to be revised.
Zinc is found to be slightly overabundant with respect to Fe in the
metallicity range
.
Below
,
[Zn/Fe] increases
rapidly to a level of +0.5 dex. Hence, our study of main-sequence halo stars
confirms the upturn of Zn/Fe previously found for very metal poor giants
(Primas et al. 2000; Johnson & Bolte 2001;
Cayrel et al. 2004). The high value of Zn/Fe at the lowest
metallicities may be a signature that stars with
have been
made from the ejecta of hypernovae with very large explosion energy as
suggested by Nomoto et al. (2006). However,
our understanding of the nucleosynthesis of Zn at all metallicities is still very limited.
Finally, we find a much reduced "signal'' in the [S/Zn] ratio as a tracer of the previous history of star formation, if non-LTE effects to the abundances of these two elements are taken into account. It would be very desirable to perform a check of the validity of the non-LTE corrections to the Zn abundance by comparing lines arising from levels with different excitation potentials, as we have been able to do here for S. However, if the non-LTE corrections applied are appropriate, it would explain why in general DLAs do not exhibit markedly supersolar [S/Zn] ratios, even at metallicities comparable to those of Galactic halo stars.
Acknowledgements
The ESO staff at Paranal is thanked for carrying out the VLT/UVES service observations. We acknowledge help from Francesca Primas, Hughes Sana, Lowell Tacconi-Garman and Burkhard Wolff in obtaining the CRIRES spectrum of G 29-23. Paul Barklem is thanked for providing a version of the BSYN program including the hydrogen lines. We are grateful to Miroslava Dessauges-Zavadsky, Sara Ellison and Jason Prochaska for communicating measurements of [S/Zn] in DLAs in advance of publication. This publication made use of the SIMBAD database operated at CDS, Strasbourg, France, and of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. This research has made use of NASA's Astrophysics Data System.
Table 1:
Derived stellar parameters and abundances of sulphur and zinc.
LTE sulphur abundances are given for each of the three S I lines. The LTE Zn abundance is
the average of the values derived from the
Zn I lines.
In calculating [S/Fe] and [Zn/Fe], solar abundances log
= 7.50, log
= 7.20
and log
= 4.60 have been adopted. The non-LTE values of [S/Fe] and [Zn/Fe] are
based on the non-LTE corrections calculated by Takeda et al. (2005) for
a hydrogen collisional parameter
.
Table A.1 gives a list of spectral lines used in this
paper and the equivalent widths measured in the 2004 UVES spectra.
Where no value is given,
it is either because the line is too weak to provide
a reliable abundance, or, in the case of the
S I lines, is affected
by residuals from the removal of strong telluric H2O lines.
We also note that the S I line at 9228.1 Å is not included, because it falls close to the
center of the Paschen-zeta line.
Table A.1:
List of spectral lines and equivalent widths measured
in the UVES 2004 spectra of the following twelve stars:
(1) CD
,
(2) CD
,
(3) CS 22943-095,
(4) G 04-37,
(5) G 48-29,
(6) G 59-27,
(7) G 126-52,
(8) G 166-54,
(9) HD 84937,
(10) HD 338529,
(11) LP 635-14,
(12) LP 651-4.
In Table B.1 the magnitudes V and
for our sample of stars are given together with the Strömgren
indices (
,
m1, c1 and the photometric index of the H
line,
(phot). The table also gives the value of the
(UVES)
index measured from the profile of H
in the UVES spectra.
This index is defined as
![]() |
(B.1) |
was derived from the observed value of
(UVES)
by quadratic interpolation between theoretical
(UVES)
values calculated for a grid of 105 model atmospheres with
As seen from Fig. B.2 there is a good correlation
between (phot) and
(UVES).
A maximum likelihood fit that takes into account the estimated errors
of the two indices gives the following relation:
![]() |
(B.2) |
![]() |
Figure B.3:
The HP2 index of the H![]() ![]() |
From this discussion it also follows that the error of
determined from the photometric H
index would be three
times higher than the error of
determined from
(UVES).
On the other hand, it is seen from Fig. B.3 that the HP2 index
of the H
line (Beers et al. 1999)
correlates extremely well with
(UVES) for 19 stars in common with
Ryan et al. (1999). Hence, for the group of metal-poor turnoff
stars, one may use the HP2 index, which is based on medium-resolution
spectra, to determine differential values of
with the same high
precision as obtained from
(UVES).
The absolute visual magnitude of a star, MV(phot), is determined from
the Strömgren indices (,
m1, c1 using a calibration
derived by Schuster et al. (2006) for a sample of stars
with accurate (
)
Hipparcos parallaxes.
Reddening corrections were
applied if E(b-y) >0. The derived values of MV(phot) are
given in Col. 11 of Table B.1. In Cols. 12 and 13, the
absolute magnitude derived directly from the Hipparcos parallax
and its error are given for stars with a parallax error less than 30%.
Table B.1:
V and
magnitudes, Strömgren indices, and
photometric and spectroscopic indices of the strength of the H
line.
The derived interstellar reddening of (
is given in Col. 10, and the absolute
visual magnitude derived from the Strömgren photometry is given in Col. 11.
Columns 12 and 13 give the absolute visual magnitude and its 1-
error derived from the
Hipparcos parallax if available with an error less than 30%.
Table C.1 provides a compilation of S and Zn abundances in 20 DLA systems as derived from high-resolution spectra obtained with 8-10 m
class telescopes. References to the original works are
given in the last column of the table. S abundances have been determined
from the
S II triplet and Zn abundances
from the
Zn II doublet.
Both S II and Zn II are the major ionization stages of their respective elements
in H I regions, and corrections for unobserved ion stages
are expected to be unimportant (e.g. Vladilo et al. 2001).
Neither S nor Zn show much affinity for dust
and the problem is further lessened in DLAs which generally
show only mild depletions of even the refractory elements
(Pettini et al. 1997). Hence, the values given in Table C.1
should reflect the true interstellar abundances of
these two elements in the high redshift galaxies giving rise to
the damped Lyman-alpha systems.
Table C.1: S and Zn abundance measurements in DLAs.