Table 1: The range of frequency bands for estimation of a non-tidal signal. The last column refers to components of  $\vec{q}_e(t)$ vector of perturbational rotation that were estimated.
Frequency band Components
low high  
-2.95 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ -2.85 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2, 3
-2.27 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ -2.07 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2, 3
-1.60 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ -1.32 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2, 3
-0.97 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ -0.52 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2, 3
$-\!$ 0.52 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ $-\!$ 0.97 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2
$-\!$ 1.32 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ $-\!$ 1.60 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2
$-\!$ 2.07 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ $-\!$ 2.27 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2
$-\!$ 2.85 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ $-\!$ 2.95 $\times $ $10^{-4}~{\rm rad~s}^{-1} $ 1, 2

Source LaTeX | All tables | In the text