Table 1: Comparison of white dwarf mass determinations from different methods.
Name $T_{\rm eff}$ $\log g$ $M_{\rm spec}$ $M_{\rm other}$ Notes Ref.
  (K)   ($M_{\odot }$) ($M_{\odot }$)    
Sirius B 24 700 $\pm$ 300 8.61 $\pm$ 0.04 0.998 $\pm$ 0.024 1.003 $\pm$ 0.016 1 1,3
40 Eri B 16 700 $\pm$ 300 7.77 $\pm$ 0.01 0.493 $\pm$ 0.006 0.501 $\pm$ 0.011 1 1,4
Sirius B 25 193 $\pm$ 37 8.566 $\pm$ 0.01 0.978 $\pm$ 0.005 1.02 $\pm$ 0.02 2 14
GD279 13 500 $\pm$ 200 7.83 $\pm$ 0.03 0.514 $\pm$ 0.016 0.44 $\pm$ 0.02 2 1,12
Feige 22 19 100 $\pm$ 400 7.78 $\pm$ 0.04 0.505 $\pm$ 0.020 0.41 $\pm$ 0.03 2 1,12
EG21 16 200 $\pm$ 300 8.06 $\pm$ 0.05 0.649 $\pm$ 0.030 0.5 $\pm$ 0.02 2 1,12
EG50 21 000 $\pm$ 300 8.10 $\pm$ 0.05 0.682 $\pm$ 0.030 0.58 $\pm$ 0.05 2 1,12
GD140 21 700 $\pm$ 300 8.48 $\pm$ 0.05 0.917 $\pm$ 0.031 0.79 $\pm$ 0.02 2 1,12
G226-29 12 000 $\pm$ 200 8.29 $\pm$ 0.03 0.784 $\pm$ 0.019 0.75 $\pm$ 0.03 2 1,12
WD2007-303 15 200 $\pm$ 700 7.86 $\pm$ 0.05 0.534 $\pm$ 0.028 0.44 $\pm$ 0.05 2 1,12
Wolf1346 20 000 $\pm$ 300 7.83 $\pm$ 0.05 0.532 $\pm$ 0.026 0.44 $\pm$ 0.01 2 1,12
G93-48 18 300 $\pm$ 300 8.02 $\pm$ 0.05 0.630 $\pm$ 0.029 0.75 $\pm$ 0.06 2 1,12
L711-10 19 900 $\pm$ 400 7.93 $\pm$ 0.05 0.584 $\pm$ 0.028 0.54 $\pm$ 0.04 2 1,12
CD-38 10 980 24 000 $\pm$ 200 7.92 $\pm$ 0.04 0.588 $\pm$ 0.021 0.74 $\pm$ 0.04 2 1,12
Wolf 485A 14 100 $\pm$ 400 7.93 $\pm$ 0.05 0.570 $\pm$ 0.018 0.59 $\pm$ 0.04 2 1,12
G154-B5B 14 000 $\pm$ 400 7.71 $\pm$ 0.05 0.457 $\pm$ 0.015 0.53 $\pm$ 0.05 2 1,12
G181-B5B 13 600 $\pm$ 500 7.79 $\pm$ 0.05 0.495 $\pm$ 0.016 0.46 $\pm$ 0.08 2 1,12
G238-44 20 200 $\pm$ 400 7.90 $\pm$ 0.05 0.568 $\pm$ 0.028 0.42 $\pm$ 0.01 2 1,12
LB 1497 31 660 $\pm$ 350 8.78 $\pm$ 0.049 1.097 $\pm$ 0.025 1.025 $\pm$ 0.043 3,5 2,6,12
HZ 4 14 770 $\pm$ 350 8.16 $\pm$ 0.049 0.707 $\pm$ 0.032 0.632 $\pm$ 0.042 3,5 2,7,12
GH 7-112 15 190 $\pm$ 350 8.3 $\pm$ 0.049 0.795 $\pm$ 0.031 0.783 $\pm$ 0.039 3,5 2,7,12
40 Eri B 16 570 $\pm$ 350 7.86 $\pm$ 0.049 0.538 $\pm$ 0.026 0.52 $\pm$ 0.4 3,5 2,8,12
GH 7-191 19 570 $\pm$ 350 8.09 $\pm$ 0.049 0.674 $\pm$ 0.030 0.669 $\pm$ 0.036 3,5 2,7,12
GH 7-233 24 420 $\pm$ 350 8.11 $\pm$ 0.049 0.695 $\pm$ 0.029 0.617 $\pm$ 0.028 3,5 2,7,12
HZ 7 21 340 $\pm$ 350 8.04 $\pm$ 0.049 0.648 $\pm$ 0.029 0.665 $\pm$ 0.077 3,5 2,7,12
HZ 14 27 390 $\pm$ 350 8.07 $\pm$ 0.049 0.678 $\pm$ 0.028 0.51 $\pm$ 0.086 3,5 2,7,12
G191-B2B 64 100 $\pm$ 350 7.69 $\pm$ 0.049 0.580 $\pm$ 0.010 0.538 $\pm$ 0.043 3,5 2,10,12
G163-50 15 070 $\pm$ 350 7.83 $\pm$ 0.049 0.519 $\pm$ 0.026 0.465 $\pm$ 0.046 3,5 2,5,12
G148-7 15 480 $\pm$ 350 7.97 $\pm$ 0.049 0.595 $\pm$ 0.028 0.558 $\pm$ 0.038 3,5 2,8,12
Wolf 485A 14 100 $\pm$ 350 7.93 $\pm$ 0.049 0.570 $\pm$ 0.028 0.529 $\pm$ 0.042 3,5 2,5,12
L762-21 18 580 $\pm$ 350 8.32 $\pm$ 0.049 0.813 $\pm$ 0.032 0.808 $\pm$ 0.099 3,5 2,5,12
G154-B5B 13 950 $\pm$ 350 7.71 $\pm$ 0.049 0.457 $\pm$ 0.024 0.524 $\pm$ 0.04 3,5 2,8,12
G142-B2A 14 040 $\pm$ 350 7.84 $\pm$ 0.049 0.521 $\pm$ 0.026 0.561 $\pm$ 0.037 3,5 2,8,12
L587-77A 9330 $\pm$ 350 7.87 $\pm$ 0.049 0.524 $\pm$ 0.028 0.657 $\pm$ 0.035 3,4,5 2,5,12
G86-B1B 9140 $\pm$ 350 8.3 $\pm$ 0.049 0.785 $\pm$ 0.032 0.454 $\pm$ 0.118 3,4,5 2,11,12
G111-71 7710 $\pm$ 350 8.15 $\pm$ 0.049 0.685 $\pm$ 0.032 0.632 $\pm$ 0.125 3,4,5 2,11,12
G116-16 8750 $\pm$ 350 8.29 $\pm$ 0.049 0.778 $\pm$ 0.032 1.009 $\pm$ 0.06 3,4,5 2,11,12
G121-22 10 260 $\pm$ 350 6.12 $\pm$ 0.049 0.651 $\pm$ 0.035 1.084 $\pm$ 0.023 3,4,5 2,11,12
G61-17 11 000 $\pm$ 350 8.04 $\pm$ 0.049 0.626 $\pm$ 0.030 0.552 $\pm$ 0.038 3,4,5 2,11,12
L619-50 10 080 $\pm$ 350 8.17 $\pm$ 0.049 0.703 $\pm$ 0.032 0.502 $\pm$ 0.069 3,4,5 2,5,12
LP696-4 10 470 $\pm$ 350 8.11 $\pm$ 0.049 0.667 $\pm$ 0.031 0.44 $\pm$ 0.12 3,4,5 2,11,12
LP25-436 8440 $\pm$ 350 8.52 $\pm$ 0.049 0.926 $\pm$ 0.032 0.644 $\pm$ 0.056 3,4,5 2,11,12
G156-64 7160 $\pm$ 350 8.43 $\pm$ 0.049 0.866 $\pm$ 0.032 0.548 $\pm$ 0.052 3,4,5 2,11,12
G216-B24B 9860 $\pm$ 350 8.2 $\pm$ 0.049 0.722 $\pm$ 0.032 0.832 $\pm$ 0.047 3,4,5 2,11,12
L557-71 8780 $\pm$ 350 8.29 $\pm$ 0.049 0.778 $\pm$ 0.032 0.549 $\pm$ 0.038 3,4,5 2,11,12
G19-20 13 620 $\pm$ 350 7.79 $\pm$ 0.049 0.495 $\pm$ 0.025 0.489 $\pm$ 0.084 3,5 2,5,12
Note: $M_{\rm spec}$ refers to spectroscopic mass derived with the evolutionary model of Panei (2000) from the spectral parameters( $T_{\rm eff}$ and $\log g$) and  $M_{\rm other}$ refers to the mass derived from 1: orbital parameters, 2: parallaxes and $\log g$, and 3: gravitational redshift. Note 4 denotes low temperature WDs ( $T_{\rm eff} <12~000$ K) and 5 denotes that the individual errors of $T_{\rm eff}$and $\log g$ of each WD is not available, so we assumed the errors of $T_{\rm eff}$ and $\log g$ being the mean errors of the sample the WD belongs to.
References: (1) Provencal et al. (1998); (2) Bergeron et al. (1995a); (3) Gatewood & Gatewood (1978); (4) Shipman et al. (1997); (5) Koester (1987) (6) Wegner et al. (1991) (7) Wegner et al. (1989); (8) Wegner & Reid (1987); (9) Koester & Weidemann (1991); (10) Reid & Wegner (1988); (11) Wegner & Reid (1991); (12) BSL and Bragaglia et al. (1995); (13) McCook & Sion (1999); (14) Barstow et al. (2005).

Source LaTeX | All tables | In the text